Yuekai Zhang 4 bulan lalu
induk
melakukan
178da09993

+ 1 - 1
runtime/triton_trtllm/client_grpc.py

@@ -692,7 +692,7 @@ async def main():
                     model_name=args.model_name,
                     audio_save_dir=args.log_dir,
                     padding_duration=10,
-                    save_sample_rate=24000 if args.model_name == "f5_tts" else 16000,
+                    save_sample_rate=16000 if args.model_name == "spark_tts" else 24000,
                     chunk_overlap_duration=args.chunk_overlap_duration,
                 )
             )

+ 3 - 3
runtime/triton_trtllm/client_http.py

@@ -162,8 +162,8 @@ if __name__ == "__main__":
     result = rsp.json()
     audio = result["outputs"][0]["data"]
     audio = np.array(audio, dtype=np.float32)
-    if args.model_name == "cosyvoice2":
-        sample_rate = 24000
-    else:
+    if args.model_name == "spark_tts":
         sample_rate = 16000
+    else:
+        sample_rate = 24000
     sf.write(args.output_audio, audio, sample_rate, "PCM_16")

+ 2 - 1
runtime/triton_trtllm/model_repo/audio_tokenizer/1/model.py

@@ -33,6 +33,7 @@ import os
 import numpy as np
 import s3tokenizer
 
+ORIGINAL_VOCAB_SIZE = 151663
 
 class TritonPythonModel:
     """Triton Python model for audio tokenization.
@@ -81,7 +82,7 @@ class TritonPythonModel:
             
         mels, mels_lens = s3tokenizer.padding(mels)
         codes, codes_lens = self.audio_tokenizer.quantize(mels.to(self.device), mels_lens.to(self.device))
-        codes = codes.clone() + 151663
+        codes = codes.clone() + ORIGINAL_VOCAB_SIZE
         
         responses = []
         for i in range(len(requests)):

+ 1 - 13
runtime/triton_trtllm/model_repo/cosyvoice2/1/model.py

@@ -199,8 +199,6 @@ class TritonPythonModel:
         Returns:
             Generated waveform tensor
         """
-        print(prompt_speech_tokens.shape, prompt_speech_feat.shape, prompt_spk_embedding.shape, target_speech_tokens.shape)
-        # Convert tensors to Triton format
         prompt_speech_tokens_tensor = pb_utils.Tensor.from_dlpack("prompt_speech_tokens", to_dlpack(prompt_speech_tokens))
         prompt_speech_feat_tensor = pb_utils.Tensor.from_dlpack("prompt_speech_feat", to_dlpack(prompt_speech_feat))
         prompt_spk_embedding_tensor = pb_utils.Tensor.from_dlpack("prompt_spk_embedding", to_dlpack(prompt_spk_embedding))
@@ -228,9 +226,7 @@ class TritonPythonModel:
         prompt = self.prompt_template.format(input_text=total_text)
         input_ids = self.tokenizer.encode(prompt)
         input_ids = torch.tensor([input_ids], dtype=torch.int32)
-        print(input_ids.shape, "before cat")
         input_ids = torch.cat([input_ids, prompt_speech_tokens], dim=1)
-        print(input_ids.shape, "after cat", prompt_speech_tokens.shape)
         return input_ids
 
     def _extract_spk_embedding(self, speech):
@@ -271,23 +267,15 @@ class TritonPythonModel:
             prompt_speech_tokens = self.forward_audio_tokenizer(wav, wav_len)
             prompt_speech_tokens = prompt_speech_tokens.unsqueeze(0)
 
-            # TODO: FIX ME
+
             wav_tensor = wav.as_numpy()
-            print(wav_tensor.shape, "wav_tensor")
             wav_tensor = torch.from_numpy(wav_tensor)[:, :wav_len.as_numpy()[0][0]]
-            print(wav_tensor.shape, "wav_tensor after")
             prompt_speech_resample = torchaudio.transforms.Resample(orig_freq=16000, new_freq=24000)(wav_tensor)
             speech_feat = self._extract_speech_feat(prompt_speech_resample)
-            print(speech_feat.shape, "speech_feat")
-            print(prompt_speech_tokens.shape, "prompt_speech_tokens here")
             token_len = min(int(speech_feat.shape[1] / 2), prompt_speech_tokens.shape[-1])
             prompt_speech_feat = speech_feat[:, :2 * token_len].contiguous().half()
             prompt_speech_tokens = prompt_speech_tokens[:, :token_len].contiguous()
-            print(prompt_speech_tokens.shape, "prompt_speech_tokens after")
-            print(speech_feat.shape, "speech_feat after")
-            print(token_len, "token_len")
             
-            # Extract text inputs
             reference_text = pb_utils.get_input_tensor_by_name(request, "reference_text").as_numpy()
             reference_text = reference_text[0][0].decode('utf-8')
             

+ 4 - 5
runtime/triton_trtllm/model_repo/token2wav/1/model.py

@@ -38,13 +38,11 @@ import triton_python_backend_utils as pb_utils
 from hyperpyyaml import load_hyperpyyaml
 from cosyvoice.utils.file_utils import convert_onnx_to_trt, export_cosyvoice2_vllm
 from cosyvoice.utils.common import TrtContextWrapper
-#import sys
-#sys.path.append("/home/scratch.yuekaiz_wwfo_1/tts/cosyvoice/CosyVoice/third_party/Matcha-TTS")
 
-# Configure logging
 logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
 logger = logging.getLogger(__name__)
 
+ORIGINAL_VOCAB_SIZE = 151663
 
 class CosyVoice2:
 
@@ -162,8 +160,9 @@ class TritonPythonModel:
             prompt_speech_feat = torch.from_numpy(prompt_speech_feat_tensor).to(self.device)
             prompt_spk_embedding = torch.from_numpy(prompt_spk_embedding_tensor).to(self.device)
 
-            prompt_speech_tokens = prompt_speech_tokens - 151663
-            target_speech_tokens = target_speech_tokens - 151663
+            # shift the speech tokens according to the original vocab size
+            prompt_speech_tokens = prompt_speech_tokens - ORIGINAL_VOCAB_SIZE
+            target_speech_tokens = target_speech_tokens - ORIGINAL_VOCAB_SIZE
             
             tts_mel, _ = self.token2wav_model.model.flow.inference(
                 token=target_speech_tokens,

+ 12 - 6
runtime/triton_trtllm/run.sh

@@ -1,8 +1,4 @@
-# huggingface-cli download --local-dir cosyvoice2_llm yuekai/cosyvoice2_llm 
-# modelscope download --model iic/CosyVoice2-0.5B --local_dir ./CosyVoice2-0.5B/ 
-# git clone --recursive https://github.com/FunAudioLLM/CosyVoice.git
-# cd CosyVoice
-# git submodule update --init --recursive
+
 export CUDA_VISIBLE_DEVICES=0
 export PYTHONPATH=/home/scratch.yuekaiz_wwfo_1/tts/cosyvoice/CosyVoice:$PYTHONPATH
 export PYTHONPATH=/home/scratch.yuekaiz_wwfo_1/tts/cosyvoice/CosyVoice/third_party/Matcha-TTS:$PYTHONPATH
@@ -12,11 +8,21 @@ stop_stage=$2
 huggingface_model_local_dir=/home/scratch.yuekaiz_wwfo_1/tts/cosyvoice/cosyvoice2_llm
 model_scope_model_local_dir=/home/scratch.yuekaiz_wwfo_1/tts/cosyvoice/CosyVoice2-0.5B
 trt_dtype=bfloat16
-trt_dtype=float16
 trt_weights_dir=/home/scratch.yuekaiz_wwfo_1/tts/cosyvoice/trt_weights_${trt_dtype}
 trt_engines_dir=/home/scratch.yuekaiz_wwfo_1/tts/cosyvoice/trt_engines_${trt_dtype}
 
 model_repo=./model_repo_cosyvoice2
+
+if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then
+    echo " "
+    huggingface-cli download --local-dir cosyvoice2_llm yuekai/cosyvoice2_llm 
+    modelscope download --model iic/CosyVoice2-0.5B --local_dir ./CosyVoice2-0.5B/ 
+    git clone --recursive https://github.com/FunAudioLLM/CosyVoice.git
+    cd CosyVoice
+    git submodule update --init --recursive
+fi
+
+
 if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then
     echo "Converting checkpoint to TensorRT weights"
     python3 scripts/convert_checkpoint.py --model_dir $huggingface_model_local_dir \