|
|
@@ -13,14 +13,50 @@
|
|
|
# See the License for the specific language governing permissions and
|
|
|
# limitations under the License.
|
|
|
import argparse
|
|
|
+from concurrent.futures import ThreadPoolExecutor, as_completed
|
|
|
+import onnxruntime
|
|
|
import torch
|
|
|
import torchaudio
|
|
|
-from tqdm import tqdm
|
|
|
-import onnxruntime
|
|
|
import torchaudio.compliance.kaldi as kaldi
|
|
|
+from tqdm import tqdm
|
|
|
+
|
|
|
+
|
|
|
+def single_job(utt):
|
|
|
+ audio, sample_rate = torchaudio.load(utt2wav[utt])
|
|
|
+ if sample_rate != 16000:
|
|
|
+ audio = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000)(audio)
|
|
|
+ feat = kaldi.fbank(audio,
|
|
|
+ num_mel_bins=80,
|
|
|
+ dither=0,
|
|
|
+ sample_frequency=16000)
|
|
|
+ feat = feat - feat.mean(dim=0, keepdim=True)
|
|
|
+ embedding = ort_session.run(None, {ort_session.get_inputs()[0].name: feat.unsqueeze(dim=0).cpu().numpy()})[0].flatten().tolist()
|
|
|
+ return utt, embedding
|
|
|
|
|
|
|
|
|
def main(args):
|
|
|
+ all_task = [executor.submit(single_job, utt) for utt in utt2wav.keys()]
|
|
|
+ utt2embedding, spk2embedding = {}, {}
|
|
|
+ for future in tqdm(as_completed(all_task)):
|
|
|
+ utt, embedding = future.result()
|
|
|
+ utt2embedding[utt] = embedding
|
|
|
+ spk = utt2spk[utt]
|
|
|
+ if spk not in spk2embedding:
|
|
|
+ spk2embedding[spk] = []
|
|
|
+ spk2embedding[spk].append(embedding)
|
|
|
+ for k, v in spk2embedding.items():
|
|
|
+ spk2embedding[k] = torch.tensor(v).mean(dim=0).tolist()
|
|
|
+ torch.save(utt2embedding, "{}/utt2embedding.pt".format(args.dir))
|
|
|
+ torch.save(spk2embedding, "{}/spk2embedding.pt".format(args.dir))
|
|
|
+
|
|
|
+
|
|
|
+if __name__ == "__main__":
|
|
|
+ parser = argparse.ArgumentParser()
|
|
|
+ parser.add_argument("--dir", type=str)
|
|
|
+ parser.add_argument("--onnx_path", type=str)
|
|
|
+ parser.add_argument("--num_thread", type=int, default=8)
|
|
|
+ args = parser.parse_args()
|
|
|
+
|
|
|
utt2wav, utt2spk = {}, {}
|
|
|
with open('{}/wav.scp'.format(args.dir)) as f:
|
|
|
for l in f:
|
|
|
@@ -36,35 +72,6 @@ def main(args):
|
|
|
option.intra_op_num_threads = 1
|
|
|
providers = ["CPUExecutionProvider"]
|
|
|
ort_session = onnxruntime.InferenceSession(args.onnx_path, sess_options=option, providers=providers)
|
|
|
+ executor = ThreadPoolExecutor(max_workers=args.num_thread)
|
|
|
|
|
|
- utt2embedding, spk2embedding = {}, {}
|
|
|
- for utt in tqdm(utt2wav.keys()):
|
|
|
- audio, sample_rate = torchaudio.load(utt2wav[utt])
|
|
|
- if sample_rate != 16000:
|
|
|
- audio = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000)(audio)
|
|
|
- feat = kaldi.fbank(audio,
|
|
|
- num_mel_bins=80,
|
|
|
- dither=0,
|
|
|
- sample_frequency=16000)
|
|
|
- feat = feat - feat.mean(dim=0, keepdim=True)
|
|
|
- embedding = ort_session.run(None, {ort_session.get_inputs()[0].name: feat.unsqueeze(dim=0).cpu().numpy()})[0].flatten().tolist()
|
|
|
- utt2embedding[utt] = embedding
|
|
|
- spk = utt2spk[utt]
|
|
|
- if spk not in spk2embedding:
|
|
|
- spk2embedding[spk] = []
|
|
|
- spk2embedding[spk].append(embedding)
|
|
|
- for k, v in spk2embedding.items():
|
|
|
- spk2embedding[k] = torch.tensor(v).mean(dim=0).tolist()
|
|
|
-
|
|
|
- torch.save(utt2embedding, '{}/utt2embedding.pt'.format(args.dir))
|
|
|
- torch.save(spk2embedding, '{}/spk2embedding.pt'.format(args.dir))
|
|
|
-
|
|
|
-
|
|
|
-if __name__ == "__main__":
|
|
|
- parser = argparse.ArgumentParser()
|
|
|
- parser.add_argument('--dir',
|
|
|
- type=str)
|
|
|
- parser.add_argument('--onnx_path',
|
|
|
- type=str)
|
|
|
- args = parser.parse_args()
|
|
|
main(args)
|