|
|
@@ -0,0 +1,438 @@
|
|
|
+# Copyright 2025, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
|
+#
|
|
|
+# Redistribution and use in source and binary forms, with or without
|
|
|
+# modification, are permitted provided that the following conditions
|
|
|
+# are met:
|
|
|
+# * Redistributions of source code must retain the above copyright
|
|
|
+# notice, this list of conditions and the following disclaimer.
|
|
|
+# * Redistributions in binary form must reproduce the above copyright
|
|
|
+# notice, this list of conditions and the following disclaimer in the
|
|
|
+# documentation and/or other materials provided with the distribution.
|
|
|
+# * Neither the name of NVIDIA CORPORATION nor the names of its
|
|
|
+# contributors may be used to endorse or promote products derived
|
|
|
+# from this software without specific prior written permission.
|
|
|
+#
|
|
|
+# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
|
|
|
+# EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
|
+# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
|
+# PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
|
|
+# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
|
+# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
|
+# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
|
+# PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
|
|
|
+# OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
|
+# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
|
+# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
+
|
|
|
+import json
|
|
|
+import math
|
|
|
+import os
|
|
|
+import re
|
|
|
+import time
|
|
|
+from typing import Dict, List, Tuple, Optional, Union
|
|
|
+import asyncio
|
|
|
+import httpx
|
|
|
+
|
|
|
+import numpy as np
|
|
|
+import torch
|
|
|
+from torch.utils.dlpack import from_dlpack, to_dlpack
|
|
|
+import triton_python_backend_utils as pb_utils
|
|
|
+from transformers import AutoTokenizer
|
|
|
+
|
|
|
+import torchaudio
|
|
|
+
|
|
|
+
|
|
|
+from matcha.utils.audio import mel_spectrogram
|
|
|
+
|
|
|
+ORIGINAL_VOCAB_SIZE = 151663
|
|
|
+torch.set_num_threads(1)
|
|
|
+
|
|
|
+
|
|
|
+def parse_speech_token_string(response_text: str) -> List[int]:
|
|
|
+ """
|
|
|
+ Parses a string of speech tokens (e.g., "<|s_123|><|s_456|>") into a list of integer IDs.
|
|
|
+ """
|
|
|
+ speech_tokens = response_text.strip().split('><')
|
|
|
+ if len(speech_tokens) > 1:
|
|
|
+ # Add back the missing '<' and '>' for proper parsing
|
|
|
+ speech_tokens = ['<' + t if not t.startswith('<') else t for t in speech_tokens]
|
|
|
+ speech_tokens = [t + '>' if not t.endswith('>') else t for t in speech_tokens]
|
|
|
+
|
|
|
+ speech_ids = []
|
|
|
+ for token_str in speech_tokens:
|
|
|
+ match = re.match(r'<\|s_(\d+)\|>', token_str)
|
|
|
+ if match:
|
|
|
+ speech_ids.append(int(match.group(1)))
|
|
|
+ return speech_ids
|
|
|
+
|
|
|
+
|
|
|
+class TritonPythonModel:
|
|
|
+ """Triton Python model for Spark TTS.
|
|
|
+
|
|
|
+ This model orchestrates the end-to-end TTS pipeline by coordinating
|
|
|
+ between audio tokenizer, LLM, and vocoder components.
|
|
|
+ """
|
|
|
+
|
|
|
+ def initialize(self, args):
|
|
|
+ """Initialize the model.
|
|
|
+
|
|
|
+ Args:
|
|
|
+ args: Dictionary containing model configuration
|
|
|
+ """
|
|
|
+ self.logger = pb_utils.Logger
|
|
|
+ # Parse model parameters
|
|
|
+ self.model_config = json.loads(args['model_config'])
|
|
|
+ parameters = self.model_config['parameters']
|
|
|
+ model_params = {k: v["string_value"] for k, v in parameters.items()}
|
|
|
+ self.logger.log_info(f"model_params:{model_params}")
|
|
|
+ self.dynamic_chunk_strategy = model_params.get("dynamic_chunk_strategy", "exponential") # "exponential" or "time_based"
|
|
|
+ self.logger.log_info(f"Using dynamic chunk strategy: {self.dynamic_chunk_strategy}")
|
|
|
+
|
|
|
+ # Initialize tokenizer
|
|
|
+ llm_tokenizer_dir = model_params["llm_tokenizer_dir"]
|
|
|
+ self.tokenizer = AutoTokenizer.from_pretrained(llm_tokenizer_dir)
|
|
|
+ self.prompt_template = "<|sos|>{input_text}<|task_id|>"
|
|
|
+ self.eos_token_id = self.tokenizer.convert_tokens_to_ids("<|eos1|>")
|
|
|
+
|
|
|
+ self.device = torch.device("cuda")
|
|
|
+ self.decoupled = pb_utils.using_decoupled_model_transaction_policy(self.model_config)
|
|
|
+
|
|
|
+ self.token_frame_rate = 25
|
|
|
+ self.flow_pre_lookahead_len = 3
|
|
|
+ self.token_hop_len = 15
|
|
|
+
|
|
|
+ spk_info_path = os.path.join(model_params["model_dir"], "spk2info.pt")
|
|
|
+ if not os.path.exists(spk_info_path):
|
|
|
+ raise ValueError(f"spk2info.pt not found in {model_params['model_dir']}")
|
|
|
+ spk_info = torch.load(spk_info_path, map_location="cpu", weights_only=False)
|
|
|
+ # self.default_spk_info = spk_info["001"]
|
|
|
+
|
|
|
+ def _convert_speech_tokens_to_str(self, speech_tokens: Union[torch.Tensor, List]) -> str:
|
|
|
+ """Converts a tensor or list of speech token IDs to a string representation."""
|
|
|
+ if isinstance(speech_tokens, torch.Tensor):
|
|
|
+ # Ensure tensor is on CPU and flattened
|
|
|
+ speech_tokens = speech_tokens.cpu().numpy().flatten().tolist()
|
|
|
+
|
|
|
+ speech_id_str = ""
|
|
|
+ for token_id in speech_tokens:
|
|
|
+ # Convert token ID back to the speech number N
|
|
|
+ token_num = token_id - ORIGINAL_VOCAB_SIZE
|
|
|
+ speech_id_str += f"<|s_{token_num}|>"
|
|
|
+ return speech_id_str
|
|
|
+
|
|
|
+ async def forward_llm_async(self, target_text: str, reference_text: str, prompt_speech_tokens: Union[torch.Tensor, List]):
|
|
|
+ """
|
|
|
+ Asynchronously sends a request to the TRTLLM-serve endpoint and processes the streaming response.
|
|
|
+ """
|
|
|
+ full_text = f"{reference_text}{target_text}"
|
|
|
+ prompt_speech_tokens_str = self._convert_speech_tokens_to_str(prompt_speech_tokens)
|
|
|
+
|
|
|
+ chat = [
|
|
|
+ {"role": "user", "content": full_text},
|
|
|
+ {"role": "assistant", "content": prompt_speech_tokens_str}
|
|
|
+ ]
|
|
|
+ print(chat)
|
|
|
+
|
|
|
+ payload = {
|
|
|
+ "model": "trt_engines_bfloat16",
|
|
|
+ "messages": chat,
|
|
|
+ "max_tokens": 750,
|
|
|
+ "temperature": 0.8,
|
|
|
+ "top_p": 0.95,
|
|
|
+ "top_k": 50,
|
|
|
+ "repetition_penalty": 1.1,
|
|
|
+ "stop": ["<|eos1|>", "<|eos|>"],
|
|
|
+ "stream": True,
|
|
|
+ }
|
|
|
+
|
|
|
+ api_base = "http://localhost:8000/v1/chat/completions"
|
|
|
+
|
|
|
+ buffer = ""
|
|
|
+ async with httpx.AsyncClient() as client:
|
|
|
+ async with client.stream("POST", api_base, json=payload, timeout=None) as response:
|
|
|
+ response.raise_for_status()
|
|
|
+ async for line in response.aiter_lines():
|
|
|
+ if line.startswith("data: "):
|
|
|
+ line_data = line[len("data: "):].strip()
|
|
|
+ if line_data == "[DONE]":
|
|
|
+ break
|
|
|
+ try:
|
|
|
+ json_data = json.loads(line_data)
|
|
|
+ content = json_data.get("choices", [{}])[0].get("delta", {}).get("content")
|
|
|
+ if content:
|
|
|
+ buffer += content
|
|
|
+ while True:
|
|
|
+ match = re.search(r"<\|s_(\d+)\|>", buffer)
|
|
|
+ if not match:
|
|
|
+ break
|
|
|
+
|
|
|
+ token_num = int(match.group(1))
|
|
|
+ final_id = token_num + ORIGINAL_VOCAB_SIZE
|
|
|
+ yield final_id
|
|
|
+ buffer = buffer[match.end():]
|
|
|
+ except json.JSONDecodeError:
|
|
|
+ self.logger.log_info(f"Skipping non-JSON line: {line_data}")
|
|
|
+ continue
|
|
|
+
|
|
|
+ # Process any remaining complete tokens in the buffer after the stream ends
|
|
|
+ while True:
|
|
|
+ match = re.search(r"<\|s_(\d+)\|>", buffer)
|
|
|
+ if not match:
|
|
|
+ break
|
|
|
+ token_num = int(match.group(1))
|
|
|
+ final_id = token_num + ORIGINAL_VOCAB_SIZE
|
|
|
+ yield final_id
|
|
|
+ buffer = buffer[match.end():]
|
|
|
+
|
|
|
+
|
|
|
+ def forward_audio_tokenizer(self, wav, wav_len):
|
|
|
+ """Forward pass through the audio tokenizer component.
|
|
|
+
|
|
|
+ Args:
|
|
|
+ wav: Input waveform tensor
|
|
|
+ wav_len: Waveform length tensor
|
|
|
+
|
|
|
+ Returns:
|
|
|
+ Tuple of global and semantic tokens
|
|
|
+ """
|
|
|
+ inference_request = pb_utils.InferenceRequest(
|
|
|
+ model_name='audio_tokenizer',
|
|
|
+ requested_output_names=['prompt_speech_tokens'],
|
|
|
+ inputs=[wav, wav_len]
|
|
|
+ )
|
|
|
+
|
|
|
+ inference_response = inference_request.exec()
|
|
|
+ if inference_response.has_error():
|
|
|
+ raise pb_utils.TritonModelException(inference_response.error().message())
|
|
|
+
|
|
|
+ # Extract and convert output tensors
|
|
|
+ prompt_speech_tokens = pb_utils.get_output_tensor_by_name(inference_response, 'prompt_speech_tokens')
|
|
|
+ prompt_speech_tokens = torch.utils.dlpack.from_dlpack(prompt_speech_tokens.to_dlpack()).cpu()
|
|
|
+
|
|
|
+ return prompt_speech_tokens
|
|
|
+
|
|
|
+ def forward_speaker_embedding(self, wav):
|
|
|
+ """Forward pass through the speaker embedding component.
|
|
|
+
|
|
|
+ Args:
|
|
|
+ wav: Input waveform tensor
|
|
|
+
|
|
|
+ Returns:
|
|
|
+ Prompt speaker embedding tensor
|
|
|
+ """
|
|
|
+ inference_request = pb_utils.InferenceRequest(
|
|
|
+ model_name='speaker_embedding',
|
|
|
+ requested_output_names=['prompt_spk_embedding'],
|
|
|
+ inputs=[pb_utils.Tensor.from_dlpack("reference_wav", to_dlpack(wav))]
|
|
|
+ )
|
|
|
+
|
|
|
+ inference_response = inference_request.exec()
|
|
|
+ if inference_response.has_error():
|
|
|
+ raise pb_utils.TritonModelException(inference_response.error().message())
|
|
|
+
|
|
|
+ # Extract and convert output tensors
|
|
|
+ prompt_spk_embedding = pb_utils.get_output_tensor_by_name(inference_response, 'prompt_spk_embedding')
|
|
|
+ prompt_spk_embedding = torch.utils.dlpack.from_dlpack(prompt_spk_embedding.to_dlpack())
|
|
|
+
|
|
|
+ return prompt_spk_embedding
|
|
|
+
|
|
|
+ def forward_token2wav(
|
|
|
+ self,
|
|
|
+ index: int,
|
|
|
+ target_speech_tokens: torch.Tensor,
|
|
|
+ request_id: str,
|
|
|
+ reference_wav: object,
|
|
|
+ reference_wav_len: object,
|
|
|
+ finalize: bool = None) -> torch.Tensor:
|
|
|
+ """Forward pass through the vocoder component.
|
|
|
+
|
|
|
+ Args:
|
|
|
+ prompt_speech_tokens: Prompt speech tokens tensor
|
|
|
+ prompt_speech_feat: Prompt speech feat tensor
|
|
|
+ prompt_spk_embedding: Prompt spk embedding tensor
|
|
|
+ target_speech_tokens: Target speech tokens tensor
|
|
|
+
|
|
|
+ Returns:
|
|
|
+ Generated waveform tensor
|
|
|
+ """
|
|
|
+ target_speech_tokens_tensor = pb_utils.Tensor.from_dlpack("target_speech_tokens", to_dlpack(target_speech_tokens))
|
|
|
+ finalize_tensor = pb_utils.Tensor("finalize", np.array([[finalize]], dtype=np.bool_))
|
|
|
+ inputs_tensor = [target_speech_tokens_tensor, reference_wav, reference_wav_len, finalize_tensor]
|
|
|
+
|
|
|
+ # Create and execute inference request
|
|
|
+ inference_request = pb_utils.InferenceRequest(
|
|
|
+ model_name='token2wav_dit',
|
|
|
+ requested_output_names=['waveform'],
|
|
|
+ inputs=inputs_tensor,
|
|
|
+ request_id=request_id,
|
|
|
+ parameters={"priority": index+1},
|
|
|
+ )
|
|
|
+
|
|
|
+ inference_response = inference_request.exec()
|
|
|
+ if inference_response.has_error():
|
|
|
+ raise pb_utils.TritonModelException(inference_response.error().message())
|
|
|
+
|
|
|
+ # Extract and convert output waveform
|
|
|
+ waveform = pb_utils.get_output_tensor_by_name(inference_response, 'waveform')
|
|
|
+ waveform = torch.utils.dlpack.from_dlpack(waveform.to_dlpack()).cpu()
|
|
|
+
|
|
|
+ return waveform
|
|
|
+
|
|
|
+ def _extract_speech_feat(self, speech):
|
|
|
+ speech_feat = mel_spectrogram(
|
|
|
+ speech,
|
|
|
+ n_fft=1920,
|
|
|
+ num_mels=80,
|
|
|
+ sampling_rate=24000,
|
|
|
+ hop_size=480,
|
|
|
+ win_size=1920,
|
|
|
+ fmin=0,
|
|
|
+ fmax=8000).squeeze(
|
|
|
+ dim=0).transpose(
|
|
|
+ 0,
|
|
|
+ 1).to(
|
|
|
+ self.device)
|
|
|
+ speech_feat = speech_feat.unsqueeze(dim=0)
|
|
|
+ return speech_feat
|
|
|
+
|
|
|
+ async def _process_request(self, request):
|
|
|
+ request_id = request.request_id()
|
|
|
+ # Extract input tensors
|
|
|
+ wav = pb_utils.get_input_tensor_by_name(request, "reference_wav")
|
|
|
+
|
|
|
+ # Process reference audio through audio tokenizer
|
|
|
+ if wav is not None:
|
|
|
+ wav_len = pb_utils.get_input_tensor_by_name(request, "reference_wav_len")
|
|
|
+ prompt_speech_tokens = self.forward_audio_tokenizer(wav, wav_len)
|
|
|
+ prompt_speech_tokens = prompt_speech_tokens.unsqueeze(0)
|
|
|
+
|
|
|
+ wav_tensor = wav.as_numpy()
|
|
|
+ wav_tensor = torch.from_numpy(wav_tensor)[:, :wav_len.as_numpy()[0][0]]
|
|
|
+ prompt_speech_resample = torchaudio.transforms.Resample(orig_freq=16000, new_freq=24000)(wav_tensor)
|
|
|
+ speech_feat = self._extract_speech_feat(prompt_speech_resample)
|
|
|
+ token_len = min(int(speech_feat.shape[1] / 2), prompt_speech_tokens.shape[-1])
|
|
|
+ prompt_speech_feat = speech_feat[:, :2 * token_len].contiguous().half()
|
|
|
+ prompt_speech_tokens = prompt_speech_tokens[:, :token_len].contiguous()
|
|
|
+
|
|
|
+ reference_text = pb_utils.get_input_tensor_by_name(request, "reference_text").as_numpy()
|
|
|
+ reference_text = reference_text[0][0].decode('utf-8')
|
|
|
+ # prompt_spk_embedding = self.forward_speaker_embedding(wav_tensor)
|
|
|
+
|
|
|
+ # reference_text = self.default_spk_info["prompt_text"]
|
|
|
+ # prompt_speech_tokens = self.default_spk_info["speech_token"] + ORIGINAL_VOCAB_SIZE
|
|
|
+ # prompt_speech_feat = None
|
|
|
+ # prompt_spk_embedding = None
|
|
|
+
|
|
|
+ else:
|
|
|
+ # using pre-cached reference text
|
|
|
+ assert False, "using pre-cached reference text is not supported"
|
|
|
+ reference_text = self.default_spk_info["prompt_text"]
|
|
|
+ prompt_speech_tokens = self.default_spk_info["speech_token"] + ORIGINAL_VOCAB_SIZE
|
|
|
+ prompt_speech_feat = None
|
|
|
+ prompt_spk_embedding = None
|
|
|
+
|
|
|
+ target_text = pb_utils.get_input_tensor_by_name(request, "target_text").as_numpy()
|
|
|
+ target_text = target_text[0][0].decode('utf-8')
|
|
|
+
|
|
|
+ if self.decoupled:
|
|
|
+ response_sender = request.get_response_sender()
|
|
|
+
|
|
|
+ semantic_token_ids_arr = []
|
|
|
+ token_offset, chunk_index = 0, 0
|
|
|
+ start_time = time.time()
|
|
|
+ this_token_hop_len = self.token_hop_len
|
|
|
+
|
|
|
+ async for generated_ids in self.forward_llm_async(
|
|
|
+ target_text=target_text,
|
|
|
+ reference_text=reference_text,
|
|
|
+ prompt_speech_tokens=prompt_speech_tokens,
|
|
|
+ ):
|
|
|
+ if not generated_ids:
|
|
|
+ break
|
|
|
+ semantic_token_ids_arr.append(generated_ids)
|
|
|
+
|
|
|
+ while True:
|
|
|
+ pending_num = len(semantic_token_ids_arr) - token_offset
|
|
|
+ if pending_num >= this_token_hop_len + self.flow_pre_lookahead_len:
|
|
|
+ this_tts_speech_token = semantic_token_ids_arr[token_offset:token_offset + this_token_hop_len + self.flow_pre_lookahead_len]
|
|
|
+ this_tts_speech_token = torch.tensor(this_tts_speech_token).unsqueeze(dim=0).to(torch.int32).to(self.device)
|
|
|
+
|
|
|
+ sub_tts_speech = self.forward_token2wav(
|
|
|
+ chunk_index,
|
|
|
+ this_tts_speech_token, request_id, wav, wav_len, False
|
|
|
+ )
|
|
|
+
|
|
|
+ audio_tensor = pb_utils.Tensor.from_dlpack("waveform", to_dlpack(sub_tts_speech))
|
|
|
+ inference_response = pb_utils.InferenceResponse(output_tensors=[audio_tensor])
|
|
|
+ response_sender.send(inference_response)
|
|
|
+
|
|
|
+ token_offset += this_token_hop_len
|
|
|
+ self.logger.log_info(f"chunk_index: {chunk_index}, current_token_hop_len: {this_token_hop_len}")
|
|
|
+
|
|
|
+ if self.dynamic_chunk_strategy == "exponential":
|
|
|
+ this_token_hop_len = self.token_frame_rate * (2 ** chunk_index)
|
|
|
+ elif self.dynamic_chunk_strategy == "time_based":
|
|
|
+ # see https://github.com/qi-hua/async_cosyvoice/blob/main/model.py#L306
|
|
|
+ cost_time = time.time() - start_time
|
|
|
+ duration = token_offset / self.token_frame_rate
|
|
|
+ if chunk_index > 0 and cost_time > 0:
|
|
|
+ avg_chunk_processing_time = cost_time / (chunk_index + 1)
|
|
|
+ if avg_chunk_processing_time > 0:
|
|
|
+ multiples = (duration - cost_time) / avg_chunk_processing_time
|
|
|
+ self.logger.log_info(f"multiples: {multiples}")
|
|
|
+ next_pending_num = len(semantic_token_ids_arr) - token_offset
|
|
|
+ if multiples > 4:
|
|
|
+ this_token_hop_len = (next_pending_num // self.token_hop_len + 1) * self.token_hop_len
|
|
|
+ elif multiples > 2:
|
|
|
+ this_token_hop_len = (next_pending_num // self.token_hop_len) * self.token_hop_len
|
|
|
+ else:
|
|
|
+ this_token_hop_len = self.token_hop_len
|
|
|
+ this_token_hop_len = max(self.token_hop_len, this_token_hop_len)
|
|
|
+ chunk_index += 1
|
|
|
+ else:
|
|
|
+ break
|
|
|
+
|
|
|
+ this_tts_speech_token = torch.tensor(semantic_token_ids_arr[token_offset:]).unsqueeze(dim=0).to(torch.int32).to(self.device)
|
|
|
+ sub_tts_speech = self.forward_token2wav(chunk_index, this_tts_speech_token, request_id, wav, wav_len, True)
|
|
|
+ audio_tensor = pb_utils.Tensor.from_dlpack("waveform", to_dlpack(sub_tts_speech))
|
|
|
+ inference_response = pb_utils.InferenceResponse(output_tensors=[audio_tensor])
|
|
|
+ response_sender.send(inference_response)
|
|
|
+
|
|
|
+ ## debug
|
|
|
+ ## save semantic_token_ids_arr and reference_text, target_text to a single json file
|
|
|
+ # save into a torch .pt
|
|
|
+ # for i, item in enumerate(semantic_token_ids_arr):
|
|
|
+ # semantic_token_ids_arr[i] = item - ORIGINAL_VOCAB_SIZE
|
|
|
+ # import json
|
|
|
+ # data = {
|
|
|
+ # "semantic_token_ids_arr": semantic_token_ids_arr,
|
|
|
+ # "reference_text": reference_text,
|
|
|
+ # "target_text": target_text
|
|
|
+ # }
|
|
|
+ # with open(f"semantic_token_ids_arr_debug_{request_id}.pt", "wb") as f:
|
|
|
+ # torch.save(data, f)
|
|
|
+ # with open(f"semantic_token_ids_arr_debug_{request_id}.json", "w") as f:
|
|
|
+ # json.dump(data, f)
|
|
|
+
|
|
|
+ # ##
|
|
|
+
|
|
|
+ response_sender.send(flags=pb_utils.TRITONSERVER_RESPONSE_COMPLETE_FINAL)
|
|
|
+ self.logger.log_info("send tritonserver_response_complete_final to end")
|
|
|
+ else:
|
|
|
+ raise NotImplementedError("Decoupled mode is not supported")
|
|
|
+
|
|
|
+ async def execute(self, requests):
|
|
|
+ """Execute inference on the batched requests.
|
|
|
+
|
|
|
+ Args:
|
|
|
+ requests: List of inference requests
|
|
|
+
|
|
|
+ Returns:
|
|
|
+ List of inference responses containing generated audio
|
|
|
+ """
|
|
|
+ tasks = [
|
|
|
+ asyncio.create_task(self._process_request(request))
|
|
|
+ for request in requests
|
|
|
+ ]
|
|
|
+ await asyncio.gather(*tasks)
|
|
|
+ return None
|