Ver código fonte

update readme

yuekaiz 5 meses atrás
pai
commit
633b991290

+ 55 - 35
runtime/triton_trtllm/README.md

@@ -1,15 +1,17 @@
-## Best Practices for Serving CosyVoice with NVIDIA Triton Inference Server
+## Serving CosyVoice with NVIDIA Triton Inference Server
 
-Thanks to the contribution from NVIDIA Yuekai Zhang.
+Contributed by Yuekai Zhang (NVIDIA).
 
 ### Quick Start
+
 Launch the service directly with Docker Compose:
 ```sh
 docker compose up
 ```
 
 ### Build the Docker Image
-Build the image from scratch:
+
+To build the image from scratch:
 ```sh
 docker build . -f Dockerfile.server -t soar97/triton-cosyvoice:25.06
 ```
@@ -21,71 +23,89 @@ docker run -it --name "cosyvoice-server" --gpus all --net host -v $your_mount_di
 ```
 
 ### Understanding `run.sh`
+
 The `run.sh` script orchestrates the entire workflow through numbered stages.
 
-Run a subset of stages with:
+You can run a subset of stages with:
 ```sh
 bash run.sh <start_stage> <stop_stage> [service_type]
 ```
-- `<start_stage>` – stage to start from (0-5).
-- `<stop_stage>`  – stage to stop after (0-5).
-
-Stages:
-- **Stage 0** – Download the cosyvoice-2 0.5B model from HuggingFace.
-- **Stage 1** – Convert the HuggingFace checkpoint to TensorRT-LLM format and build TensorRT engines.
-- **Stage 2** – Create the Triton model repository and configure the model files (adjusts depending on whether `Decoupled=True/False` will be used later).
-- **Stage 3** – Launch the Triton Inference Server.
-- **Stage 4** – Run the single-utterance HTTP client.
-- **Stage 5** – Run the gRPC benchmark client.
-
-### Export Models to TensorRT-LLM and Launch the Server
+- `<start_stage>`: The stage to start from (0-5).
+- `<stop_stage>`: The stage to stop after (0-5).
+
+**Stages:**
+
+- **Stage 0**: Downloads the `cosyvoice-2 0.5B` model from HuggingFace.
+- **Stage 1**: Converts the HuggingFace checkpoint to the TensorRT-LLM format and builds the TensorRT engines.
+- **Stage 2**: Creates the Triton model repository and configures the model files. The configuration is adjusted based on whether `Decoupled=True` (streaming) or `Decoupled=False` (offline) will be used.
+- **Stage 3**: Launches the Triton Inference Server.
+- **Stage 4**: Runs the single-utterance HTTP client for testing.
+- **Stage 5**: Runs the gRPC benchmark client.
+
+### Export Models and Launch Server
+
 Inside the Docker container, prepare the models and start the Triton server by running stages 0-3:
 ```sh
-# Runs stages 0, 1, 2, and 3
+# This command runs stages 0, 1, 2, and 3
 bash run.sh 0 3
 ```
-*Note: Stage 2 prepares the model repository differently depending on whether you intend to run with `Decoupled=False` or `Decoupled=True`. Rerun stage 2 if you switch the service type.*
+> [!TIP]
+> Both streaming and offline (non-streaming) TTS modes are supported. For streaming TTS, set `Decoupled=True`. For offline TTS, set `Decoupled=False`. You need to rerun stage 2 if you switch between modes.
 
 ### Single-Utterance HTTP Client
-Send a single HTTP inference request:
+
+Sends a single HTTP inference request. This is intended for testing the offline TTS mode (`Decoupled=False`):
 ```sh
 bash run.sh 4 4
 ```
 
 ### Benchmark with a Dataset
-Benchmark the running Triton server. Pass either `streaming` or `offline` as the third argument.
+
+To benchmark the running Triton server, pass `streaming` or `offline` as the third argument:
 ```sh
-bash run.sh 5 5
+bash run.sh 5 5 # [streaming|offline]
 
-# You can also customise parameters such as num_task and dataset split directly:
+# You can also customize parameters such as the number of tasks and the dataset split:
 # python3 client_grpc.py --num-tasks 2 --huggingface-dataset yuekai/seed_tts_cosy2 --split-name test_zh --mode [streaming|offline]
 ```
 > [!TIP]
-> Only offline CosyVoice TTS is currently supported. Setting the client to `streaming` simply enables NVIDIA Triton’s decoupled mode so that responses are returned as soon as they are ready.
+> It is recommended to run the benchmark multiple times to get stable results after the initial server warm-up.
 
 ### Benchmark Results
-Decoding on a single L20 GPU with 26 prompt_audio/target_text [pairs](https://huggingface.co/datasets/yuekai/seed_tts) (≈221 s of audio):
+The following results were obtained by decoding on a single L20 GPU with 26 prompt audio/target text pairs from the [yuekai/seed_tts](https://huggingface.co/datasets/yuekai/seed_tts) dataset (approximately 170 seconds of audio):
 
+**Streaming TTS (First Chunk Latency)**
+| Mode | Concurrency | Avg Latency (ms) | P50 Latency (ms) | RTF |
+|---|---|---|---|---|
+| Streaming, Decoupled=True | 1 | 220.43 | 218.07 | 0.1237 |
+| Streaming, Decoupled=True | 2 | 476.97 | 369.25 | 0.1022 |
+| Streaming, Decoupled=True | 4 | 1107.34 | 1243.75| 0.0922 |
+
+**Offline TTS (Full Sentence Latency)**
 | Mode | Note | Concurrency | Avg Latency (ms) | P50 Latency (ms) | RTF |
-|------|------|-------------|------------------|------------------|-----|
-| Decoupled=False | [Commit](https://github.com/yuekaizhang/CosyVoice/commit/b44f12110224cb11c03aee4084b1597e7b9331cb) | 1 | 758.04 | 615.79 | 0.0891 |
-| Decoupled=False | [Commit](https://github.com/yuekaizhang/CosyVoice/commit/b44f12110224cb11c03aee4084b1597e7b9331cb) | 2 | 1025.93 | 901.68 | 0.0657 |
-| Decoupled=False | [Commit](https://github.com/yuekaizhang/CosyVoice/commit/b44f12110224cb11c03aee4084b1597e7b9331cb) | 4 | 1914.13 | 1783.58 | 0.0610 |
-| Decoupled=True  | [Commit](https://github.com/yuekaizhang/CosyVoice/commit/b44f12110224cb11c03aee4084b1597e7b9331cb) | 1 | 659.87 | 655.63 | 0.0891 |
-| Decoupled=True  | [Commit](https://github.com/yuekaizhang/CosyVoice/commit/b44f12110224cb11c03aee4084b1597e7b9331cb) | 2 | 1103.16 | 992.96 | 0.0693 |
-| Decoupled=True  | [Commit](https://github.com/yuekaizhang/CosyVoice/commit/b44f12110224cb11c03aee4084b1597e7b9331cb) | 4 | 1790.91 | 1668.63 | 0.0604 |
+|---|---|---|---|---|---|
+| Offline, Decoupled=False | [Commit](https://github.com/yuekaizhang/CosyVoice/commit/b44f12110224cb11c03aee4084b1597e7b9331cb) | 1 | 758.04 | 615.79 | 0.0891 |
+| Offline, Decoupled=False | [Commit](https://github.com/yuekaizhang/CosyVoice/commit/b44f12110224cb11c03aee4084b1597e7b9331cb) | 2 | 1025.93 | 901.68 | 0.0657 |
+| Offline, Decoupled=False | [Commit](https://github.com/yuekaizhang/CosyVoice/commit/b44f12110224cb11c03aee4084b1597e7b9331cb) | 4 | 1914.13 | 1783.58 | 0.0610 |
 
 ### OpenAI-Compatible Server
-To launch an OpenAI-compatible service, run:
+
+To launch an OpenAI-compatible API service, run the following commands:
 ```sh
 git clone https://github.com/yuekaizhang/Triton-OpenAI-Speech.git
+cd Triton-OpenAI-Speech
 pip install -r requirements.txt
-# After the Triton service is up, start the FastAPI bridge:
+
+# After the Triton service is running, start the FastAPI bridge:
 python3 tts_server.py --url http://localhost:8000 --ref_audios_dir ./ref_audios/ --port 10086 --default_sample_rate 24000
-# Test with curl
+
+# Test the service with curl:
 bash test/test_cosyvoice.sh
 ```
+> [!NOTE]
+> Currently, only the offline TTS mode is compatible with the OpenAI-compatible server.
 
 ### Acknowledgements
-This section originates from the NVIDIA CISI project. We also provide other multimodal resources—see [mair-hub](https://github.com/nvidia-china-sae/mair-hub) for details.
+
+This work originates from the NVIDIA CISI project. For more multimodal resources, please see [mair-hub](https://github.com/nvidia-china-sae/mair-hub).
 

+ 1 - 1
runtime/triton_trtllm/model_repo/audio_tokenizer/1/model.py

@@ -32,7 +32,7 @@ import triton_python_backend_utils as pb_utils
 import os
 import numpy as np
 import s3tokenizer
-
+torch.set_num_threads(1)
 ORIGINAL_VOCAB_SIZE = 151663
 
 

+ 69 - 25
runtime/triton_trtllm/model_repo/cosyvoice2/1/model.py

@@ -28,6 +28,8 @@ import json
 import math
 import os
 import re
+import threading
+import time
 from typing import Dict, List, Tuple, Optional, Union
 
 import numpy as np
@@ -42,6 +44,7 @@ import torchaudio
 
 from matcha.utils.audio import mel_spectrogram
 
+torch.set_num_threads(1)
 
 class TritonPythonModel:
     """Triton Python model for Spark TTS.
@@ -62,6 +65,8 @@ class TritonPythonModel:
         parameters = self.model_config['parameters']
         model_params = {k: v["string_value"] for k, v in parameters.items()}
         self.logger.log_info(f"model_params:{model_params}")
+        self.dynamic_chunk_strategy = model_params.get("dynamic_chunk_strategy", "exponential") # "exponential" or "time_based"
+        self.logger.log_info(f"Using dynamic chunk strategy: {self.dynamic_chunk_strategy}")
 
         # Initialize tokenizer
         llm_tokenizer_dir = model_params["llm_tokenizer_dir"]
@@ -72,6 +77,10 @@ class TritonPythonModel:
         self.device = torch.device("cuda")
         self.decoupled = pb_utils.using_decoupled_model_transaction_policy(self.model_config)
 
+        self.token_frame_rate = 25
+        self.flow_pre_lookahead_len = 3
+        self.token_hop_len = 15
+
     def forward_llm(self, input_ids):
         """
         Prepares the response from the language model based on the provided
@@ -99,7 +108,7 @@ class TritonPythonModel:
         """
         # convert input_ids to numpy, with shape [1, sequence_length]
         input_ids = input_ids.cpu().numpy()
-        max_tokens = 1024
+        max_tokens = 750
         input_dict = {
             "request_output_len": np.array([[max_tokens]], dtype=np.int32),
             "end_id": np.array([[self.eos_token_id]], dtype=np.int32),
@@ -109,6 +118,7 @@ class TritonPythonModel:
             "runtime_top_k": np.array([[50]], dtype=np.int32),
             "temperature": np.array([[0.8]], dtype=np.float32),
             "repetition_penalty": np.array([[1.1]], dtype=np.float32),
+            "random_seed": np.array([[42]], dtype=np.uint64),
             "input_ids": input_ids,
             "input_lengths": np.array([[input_ids.shape[1]]], dtype=np.int32),
         }
@@ -139,7 +149,6 @@ class TritonPythonModel:
 
                 # Get actual output IDs up to the sequence length
                 actual_output_ids = output_ids[0][0][:seq_lens[0][0]]
-                print(f"actual_output_ids: {actual_output_ids}")
 
                 yield actual_output_ids
         else:
@@ -290,6 +299,15 @@ class TritonPythonModel:
         speech_feat = speech_feat.unsqueeze(dim=0)
         return speech_feat
 
+
+    def _llm_gen_thread(self, generated_ids_iter, semantic_token_ids_arr, llm_is_done_flag):
+        for generated_ids in generated_ids_iter:
+            generated_ids = generated_ids.tolist()
+            if len(generated_ids) == 0:
+                break
+            semantic_token_ids_arr.extend(generated_ids)
+        llm_is_done_flag[0] = True
+
     def execute(self, requests):
         """Execute inference on the batched requests.
 
@@ -322,9 +340,7 @@ class TritonPythonModel:
 
 
             flow_prompt_speech_token_len = prompt_speech_tokens.shape[-1]
-            token_hop_len = 25
-            flow_pre_lookahead_len = 3
-
+            
             reference_text = pb_utils.get_input_tensor_by_name(request, "reference_text").as_numpy()
             reference_text = reference_text[0][0].decode('utf-8')
 
@@ -340,47 +356,75 @@ class TritonPythonModel:
 
             # Generate semantic tokens with LLM
             generated_ids_iter = self.forward_llm(input_ids)
-
             prompt_spk_embedding = self.forward_speaker_embedding(wav_tensor)
-            print(f"here2")
+
             if self.decoupled:
                 response_sender = request.get_response_sender()
 
+                semantic_token_ids_arr = []
+                llm_is_done_flag = [False]
+
+                llm_thread = threading.Thread(
+                    target=self._llm_gen_thread,
+                    args=(generated_ids_iter, semantic_token_ids_arr, llm_is_done_flag)
+                )
 
+                llm_thread.start()
 
-                semantic_token_ids_arr, token_offset = [], 0
-                for generated_ids in generated_ids_iter:
+                token_offset, chunk_index = 0, 0
+                start_time = time.time()
+                this_token_hop_len = self.token_hop_len
 
-                    generated_ids = generated_ids.tolist()
-                    print(f"generated_id: {generated_ids}")
-                    semantic_token_ids_arr.extend(generated_ids)
+                while True:
+                    pending_num = len(semantic_token_ids_arr) - token_offset
 
-                    prompt_token_pad = int(np.ceil(flow_prompt_speech_token_len / token_hop_len) * token_hop_len - flow_prompt_speech_token_len)
-                    this_token_hop_len = token_hop_len + prompt_token_pad if token_offset == 0 else token_hop_len
-                    print(f"this_token_hop_len: {this_token_hop_len}")
-                    if len(semantic_token_ids_arr) - token_offset >= this_token_hop_len + flow_pre_lookahead_len:
-                        this_tts_speech_token = semantic_token_ids_arr[:token_offset + this_token_hop_len + flow_pre_lookahead_len]
-                        print(f"this_tts_speech_token: {this_tts_speech_token}")
+                    if llm_is_done_flag[0]:
+                        break
+
+                    if pending_num >= this_token_hop_len + self.flow_pre_lookahead_len:
+                        this_tts_speech_token = semantic_token_ids_arr[:token_offset + this_token_hop_len + self.flow_pre_lookahead_len]
                         this_tts_speech_token = torch.tensor(this_tts_speech_token).unsqueeze(dim=0).to(torch.int32).to(self.device)
-                        print(f"here3")
-                        
+
                         sub_tts_speech = self.forward_token2wav(prompt_speech_tokens, prompt_speech_feat, prompt_spk_embedding, this_tts_speech_token, request_id, token_offset, False)
-                        print(f"here4")
-                        # Prepare response to send
+
                         audio_tensor = pb_utils.Tensor.from_dlpack("waveform", to_dlpack(sub_tts_speech))
                         inference_response = pb_utils.InferenceResponse(output_tensors=[audio_tensor])
                         response_sender.send(inference_response)
 
-                        self.logger.log_info(f"[{request_id}]")
                         token_offset += this_token_hop_len
-                print(f"here")
+                        self.logger.log_info(f"chunk_index: {chunk_index}, current_token_hop_len: {this_token_hop_len}")
+
+                        if self.dynamic_chunk_strategy == "exponential":
+                            this_token_hop_len = self.token_frame_rate * (2 ** chunk_index)
+                        elif self.dynamic_chunk_strategy == "time_based":
+                            # see https://github.com/qi-hua/async_cosyvoice/blob/main/model.py#L306
+                            cost_time = time.time() - start_time
+                            duration = token_offset / self.token_frame_rate
+                            if chunk_index > 0 and cost_time > 0:
+                                avg_chunk_processing_time = cost_time / (chunk_index + 1)
+                                if avg_chunk_processing_time > 0:
+                                    multiples = (duration - cost_time) / avg_chunk_processing_time
+                                    self.logger.log_info(f"multiples: {multiples}")
+                                    next_pending_num = len(semantic_token_ids_arr) - token_offset
+                                    if multiples > 4:
+                                        this_token_hop_len = (next_pending_num // self.token_hop_len + 1) * self.token_hop_len
+                                    elif multiples > 2:
+                                        this_token_hop_len = (next_pending_num // self.token_hop_len) * self.token_hop_len
+                                    else:
+                                        this_token_hop_len = self.token_hop_len
+                                    this_token_hop_len = max(self.token_hop_len, this_token_hop_len)
+                        
+                        chunk_index += 1
+                    else:
+                        time.sleep(0.02)
 
                 this_tts_speech_token = torch.tensor(semantic_token_ids_arr).unsqueeze(dim=0).to(torch.int32).to(self.device)
                 sub_tts_speech = self.forward_token2wav(prompt_speech_tokens, prompt_speech_feat, prompt_spk_embedding, this_tts_speech_token, request_id, token_offset, True)
                 audio_tensor = pb_utils.Tensor.from_dlpack("waveform", to_dlpack(sub_tts_speech))
                 inference_response = pb_utils.InferenceResponse(output_tensors=[audio_tensor])
                 response_sender.send(inference_response)
-
+                
+                llm_thread.join()
                 response_sender.send(flags=pb_utils.TRITONSERVER_RESPONSE_COMPLETE_FINAL)
                 self.logger.log_info("send tritonserver_response_complete_final to end")
             else:

+ 8 - 9
runtime/triton_trtllm/model_repo/token2wav/1/model.py

@@ -47,11 +47,11 @@ logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(level
 logger = logging.getLogger(__name__)
 
 ORIGINAL_VOCAB_SIZE = 151663
-
+torch.set_num_threads(1)
 
 class CosyVoice2:
 
-    def __init__(self, model_dir, load_jit=False, load_trt=False, fp16=False, trt_concurrent=1):
+    def __init__(self, model_dir, load_jit=False, load_trt=False, fp16=False, trt_concurrent=1, device='cuda'):
 
         self.model_dir = model_dir
         self.fp16 = fp16
@@ -61,7 +61,7 @@ class CosyVoice2:
             raise ValueError('{} not found!'.format(hyper_yaml_path))
         with open(hyper_yaml_path, 'r') as f:
             configs = load_hyperpyyaml(f, overrides={'qwen_pretrain_path': os.path.join(model_dir, 'CosyVoice-BlankEN')})
-        self.model = CosyVoice2Model(configs['flow'], configs['hift'], fp16)
+        self.model = CosyVoice2Model(configs['flow'], configs['hift'], fp16, device)
         self.model.load('{}/flow.pt'.format(model_dir), '{}/hift.pt'.format(model_dir))
         if load_jit:
             self.model.load_jit('{}/flow.encoder.{}.zip'.format(model_dir, 'fp16' if self.fp16 is True else 'fp32'))
@@ -77,8 +77,9 @@ class CosyVoice2Model:
     def __init__(self,
                  flow: torch.nn.Module,
                  hift: torch.nn.Module,
-                 fp16: bool = False):
-        self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
+                 fp16: bool = False,
+                 device: str = 'cuda'):
+        self.device = device
         self.flow = flow
         self.hift = hift
         self.fp16 = fp16
@@ -179,11 +180,11 @@ class TritonPythonModel:
         model_dir = model_params["model_dir"]
 
         # Initialize device and vocoder
-        self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
+        self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
         logger.info(f"Initializing vocoder from {model_dir} on {self.device}")
 
         self.token2wav_model = CosyVoice2(
-            model_dir, load_jit=True, load_trt=True, fp16=True
+            model_dir, load_jit=False, load_trt=True, fp16=True, device=self.device
         )
 
         logger.info("Token2Wav initialized successfully")
@@ -224,7 +225,6 @@ class TritonPythonModel:
                 else:
                     stream = False
                 request_id = request.request_id()
-                print(f"token_offset: {token_offset}, finalize: {finalize}, request_id: {request_id}")
                 audio_hat = self.token2wav_model.model.token2wav(token=target_speech_tokens,
                                                                  prompt_token=prompt_speech_tokens,
                                                                  prompt_feat=prompt_speech_feat,
@@ -234,7 +234,6 @@ class TritonPythonModel:
                                                                  stream=stream,
                                                                  finalize=finalize)
                 if finalize:
-                    print(f"dict keys: {self.token2wav_model.model.hift_cache_dict.keys()}")
                     self.token2wav_model.model.hift_cache_dict.pop(request_id)
 
             else:

+ 11 - 8
runtime/triton_trtllm/run.sh

@@ -60,6 +60,7 @@ if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
     cp -r ./model_repo/audio_tokenizer $model_repo
     cp -r ./model_repo/tensorrt_llm $model_repo
     cp -r ./model_repo/token2wav $model_repo
+    cp -r ./model_repo/speaker_embedding $model_repo
 
     ENGINE_PATH=$trt_engines_dir
     MAX_QUEUE_DELAY_MICROSECONDS=0
@@ -67,11 +68,12 @@ if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
     LLM_TOKENIZER_DIR=$huggingface_model_local_dir
     BLS_INSTANCE_NUM=4
     TRITON_MAX_BATCH_SIZE=16
-    DECOUPLED_MODE=False
+    DECOUPLED_MODE=True # True for streaming, False for offline
 
     python3 scripts/fill_template.py -i ${model_repo}/token2wav/config.pbtxt model_dir:${MODEL_DIR},triton_max_batch_size:${TRITON_MAX_BATCH_SIZE},max_queue_delay_microseconds:${MAX_QUEUE_DELAY_MICROSECONDS}
     python3 scripts/fill_template.py -i ${model_repo}/audio_tokenizer/config.pbtxt model_dir:${MODEL_DIR},triton_max_batch_size:${TRITON_MAX_BATCH_SIZE},max_queue_delay_microseconds:${MAX_QUEUE_DELAY_MICROSECONDS}
     python3 scripts/fill_template.py -i ${model_repo}/${cosyvoice2_dir}/config.pbtxt model_dir:${MODEL_DIR},bls_instance_num:${BLS_INSTANCE_NUM},llm_tokenizer_dir:${LLM_TOKENIZER_DIR},triton_max_batch_size:${TRITON_MAX_BATCH_SIZE},decoupled_mode:${DECOUPLED_MODE},max_queue_delay_microseconds:${MAX_QUEUE_DELAY_MICROSECONDS}
+    python3 scripts/fill_template.py -i ${model_repo}/speaker_embedding/config.pbtxt model_dir:${MODEL_DIR},triton_max_batch_size:${TRITON_MAX_BATCH_SIZE},max_queue_delay_microseconds:${MAX_QUEUE_DELAY_MICROSECONDS}
     python3 scripts/fill_template.py -i ${model_repo}/tensorrt_llm/config.pbtxt triton_backend:tensorrtllm,triton_max_batch_size:${TRITON_MAX_BATCH_SIZE},decoupled_mode:${DECOUPLED_MODE},max_beam_width:1,engine_dir:${ENGINE_PATH},max_tokens_in_paged_kv_cache:2560,max_attention_window_size:2560,kv_cache_free_gpu_mem_fraction:0.5,exclude_input_in_output:True,enable_kv_cache_reuse:False,batching_strategy:inflight_fused_batching,max_queue_delay_microseconds:${MAX_QUEUE_DELAY_MICROSECONDS},encoder_input_features_data_type:TYPE_FP16,logits_datatype:TYPE_FP32
 
 fi
@@ -82,7 +84,7 @@ if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
 fi
 
 if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then
-    echo "Single request test http"
+    echo "Single request test http, only work for offline TTS mode"
     python3 client_http.py \
         --reference-audio ./assets/prompt_audio.wav \
         --reference-text "吃燕窝就选燕之屋,本节目由26年专注高品质燕窝的燕之屋冠名播出。豆奶牛奶换着喝,营养更均衡,本节目由豆本豆豆奶特约播出。" \
@@ -92,15 +94,16 @@ fi
 
 if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then
     echo "Running benchmark client grpc"
-    num_task=4
-    # set mode=streaming, when decoupled=True
-    # set mode=offline, when decoupled=False
-    mode=offline
+    num_task=1
+
+    mode=streaming
+    BLS_INSTANCE_NUM=4
+
     python3 client_grpc.py \
         --server-addr localhost \
         --model-name cosyvoice2 \
         --num-tasks $num_task \
         --mode $mode \
         --huggingface-dataset yuekai/seed_tts_cosy2 \
-        --log-dir ./log_concurrent_tasks_${num_task}_${mode}_bls_4_${trt_dtype}
-fi
+        --log-dir ./log_concurrent_tasks_${num_task}_${mode}_bls_${BLS_INSTANCE_NUM}
+fi