root il y a 2 mois
Parent
commit
66ef5a097b

+ 2 - 2
runtime/triton_trtllm/README.md

@@ -78,7 +78,7 @@ For offline inference mode benchmark, please check the below command:
 # install FlashCosyVoice for token2wav batching
 # git clone https://github.com/yuekaizhang/FlashCosyVoice.git /workspace/FlashCosyVoice -b trt
 # cd /workspace/FlashCosyVoice
-# pip install -e . 
+# pip install -e .
 # cd -
 # wget https://huggingface.co/yuekai/cosyvoice2_flow_onnx/resolve/main/flow.decoder.estimator.fp32.dynamic_batch.onnx -O $model_scope_model_local_dir/flow.decoder.estimator.fp32.dynamic_batch.onnx
 
@@ -116,7 +116,7 @@ The following results were obtained by decoding on a single L20 GPU with 26 prom
 | HF | 1 | 39.26 |  44.31 | 0.2494 |
 | HF | 2 | 30.54 | 35.62 | 0.2064 |
 | HF | 4 | 18.63 |  23.90 | 0.1421 |
-| HF | 8 | 11.22 | 16.45 | 0.0947 | 
+| HF | 8 | 11.22 | 16.45 | 0.0947 |
 | HF | 16 | 8.42 | 13.78 | 0.0821 |
 | TRTLLM | 1 | 12.46 | 17.31 | 0.0987 |
 | TRTLLM | 2 | 7.64 |12.65 | 0.0739 |

+ 8 - 50
runtime/triton_trtllm/offline_inference.py

@@ -65,6 +65,7 @@ def extract_speech_ids(speech_tokens_str):
             print(f"Unexpected token: {token_str}")
     return speech_ids
 
+
 def convert_cosy2_tokens_to_speech_id_str(cosy2_tokens):
     """Convert CosyVoice2 tokens to speech IDs string like <|s_23456|>"""
     speech_id_str = ""
@@ -167,7 +168,6 @@ def get_args():
     return args
 
 
-
 def data_collator(batch, tokenizer, s3_tokenizer):
     """Simplified data collator for batch_size=1 processing"""
     collator_start_time = time.time()
@@ -202,7 +202,6 @@ def data_collator(batch, tokenizer, s3_tokenizer):
             item["prompt_audio"]["sampling_rate"],
         )
         ref_audio_org = torch.from_numpy(ref_audio_org).float().unsqueeze(0)
-        # ref_audio_org = ref_audio_org.mean(dim=0, keepdim=True)
         print(ref_audio_org.shape)
 
         if ref_sr != target_sample_rate:
@@ -220,7 +219,6 @@ def data_collator(batch, tokenizer, s3_tokenizer):
             prompt_audio_cosy2tokens = item["prompt_audio_cosy2_tokens"]
             prompt_audio_cosy2tokens_list.append(prompt_audio_cosy2tokens)
         else:
-            # convert to float first
             mels.append(s3tokenizer.log_mel_spectrogram(ref_audio.squeeze(0)))
 
     if len(mels) > 0:
@@ -287,33 +285,23 @@ def main(args):
     os.makedirs(args.output_dir, exist_ok=True)
 
     assert torch.cuda.is_available()
-    # world_size, local_rank, rank = init_distributed()
     local_rank, world_size, rank = 0, 1, 0
     device = torch.device(f"cuda:{local_rank}")
 
-    # Load tokenizer
     tokenizer = AutoTokenizer.from_pretrained(args.llm_model_name_or_path)
 
-    # model = LLM(model=args.llm_model_name_or_path, gpu_memory_utilization=0.4)
-    # Initialize backend based on argument
     if args.backend == "hf":
-        # Load HuggingFace model
         model = AutoModelForCausalLM.from_pretrained(args.llm_model_name_or_path)
         model.eval()
         model.to(device)
         runner = None
     elif args.backend == "trtllm":
-        # Validate engine_dir is provided
         if args.engine_dir is None:
             raise ValueError("--engine-dir is required when backend is 'trtllm'")
-        # import tensorrt_llm
-        #from tensorrt_llm.runtime import ModelRunnerCpp
 
-        # Initialize TensorRT-LLM runner
         runtime_rank = tensorrt_llm.mpi_rank()
         model = None
 
-        # Prepare input for runner initialization
         runner_kwargs = dict(
             engine_dir=args.engine_dir,
             rank=runtime_rank,
@@ -328,7 +316,6 @@ def main(args):
 
         runner = ModelRunnerCpp.from_dir(**runner_kwargs)
     elif args.backend == "vllm":
-        # from vllm import LLM, SamplingParams
         model = LLM(model=args.llm_model_name_or_path, gpu_memory_utilization=0.4)
         runner = None
     else:
@@ -349,7 +336,6 @@ def main(args):
         trust_remote_code=True,
     )
 
-    # sampler = DistributedSampler(dataset, num_replicas=world_size, rank=rank)
     sampler = None
     dataloader = DataLoader(
         dataset,
@@ -385,7 +371,6 @@ def main(args):
             total_speech_tokenization_time_in_collator += batch["speech_tokenization_time"]
             total_text_tokenization_time_in_collator += batch["text_tokenization_time"]
             with torch.no_grad():
-                # Generate speech tokens using LLM
                 llm_start_time = time.time()
                 if args.backend == "hf":
                     input_ids_list = batch["input_ids"]
@@ -393,31 +378,22 @@ def main(args):
                         input_ids = input_ids_list[0].unsqueeze(0)
                         attention_mask = torch.ones_like(input_ids)
                     else:
-                        # Handle batch > 1 if needed
                         max_len = max([len(input_ids) for input_ids in input_ids_list])
-                        # input_ids_list_new = [
-                        #     torch.cat([torch.full((max_len - len(input_ids),), tokenizer.pad_token_id), input_ids])
-                        #     for input_ids in input_ids_list
-                        # ]
                         input_ids_list_new = [
                             torch.cat([input_ids, torch.full((max_len - len(input_ids),), tokenizer.pad_token_id)])
                             for input_ids in input_ids_list
                         ]
                         input_ids = torch.stack(input_ids_list_new)
-                        # compute attention mask
                         attention_mask = torch.zeros_like(input_ids)
                         for i in range(len(input_ids_list)):
                             attention_mask[i, :len(input_ids_list[i])] = 1
 
-                        # breakpoint()
-
-
                     input_ids = input_ids.to(device)
 
                     outputs = model.generate(
                         input_ids=input_ids.to(device),
                         attention_mask=attention_mask.to(device),
-                        max_new_tokens=2048,  # Max length for generation
+                        max_new_tokens=2048,
                         do_sample=True,
                         top_p=args.top_p,
                         temperature=args.temperature,
@@ -426,14 +402,11 @@ def main(args):
                     )
                     torch.cuda.synchronize()
                 elif args.backend == "trtllm":
-                    # Convert input_ids to list of tensors for TensorRT-LLM
                     batch_input_ids = [ids for ids in batch["input_ids"]]
                     input_lengths = [x.size(0) for x in batch_input_ids]
 
-                    # Get end_id from tokenizer
                     end_id = tokenizer.convert_tokens_to_ids("<|eos1|>") if "<|eos1|>" in tokenizer.get_vocab() else tokenizer.eos_token_id
                     print(f"end_id: {end_id}, tokenizer.eos_token_id: {tokenizer.eos_token_id} ========================")
-                    # random_seed=42,                         repetition_penalty=1.1,
                     outputs = runner.generate(
                         batch_input_ids=batch_input_ids,
                         max_new_tokens=2048,
@@ -451,7 +424,6 @@ def main(args):
                         return_all_generated_tokens=False
                     )
                     torch.cuda.synchronize()
-                    # Extract output_ids from TensorRT-LLM output
                     output_ids, sequence_lengths = outputs["output_ids"], outputs["sequence_lengths"]
                     num_output_sents, num_beams, _ = output_ids.size()
                     assert num_beams == 1
@@ -463,18 +435,12 @@ def main(args):
                     for i in range(batch_size * num_return_sequences):
                         batch_idx = i // num_return_sequences
                         seq_idx = i % num_return_sequences
-                        # inputs = output_ids[i][0][:input_lengths[batch_idx]].tolist()
-                        # input_text = tokenizer.decode(inputs)
-                        # print(f'Input [Text {batch_idx}]: \"{input_text}\"')
                         output_begin = input_lengths[batch_idx]
                         output_end = sequence_lengths[i][beam]
-                        # outputs_i = output_ids[i][beam][output_begin:output_end].tolist()
                         outputs_i = output_ids[i][beam][:output_end].tolist()
                         outputs.append(outputs_i)
                 elif args.backend == "vllm":
                     input_ids_list = [ids.tolist() for ids in batch["input_ids"]]
-                    # prompts = [batch["prompt_text_after_apply_template"][i] for i in range(len(batch["prompt_text_after_apply_template"]))]
-                    # print(prompts)
                     sampling_params = SamplingParams(
                         temperature=args.temperature,
                         top_p=args.top_p,
@@ -483,26 +449,21 @@ def main(args):
                         max_tokens=2048,
                     )
                     outputs = model.generate(prompt_token_ids=input_ids_list, sampling_params=sampling_params)
-                    # outputs = model.generate(prompts, sampling_params)
                     print(outputs)
-                    # breakpoint()
                     for j, output in enumerate(outputs):
                         outputs[j] = input_ids_list[j] + output.outputs[0].token_ids
 
                 llm_end_time = time.time()
                 total_llm_time += (llm_end_time - llm_start_time)
 
-                items_for_token2wav = []
+                items_for_token_2wav = []
                 for i in range(len(batch["ids"])):
                     llm_post_processing_start_time = time.time()
-                    # Extract generated tokens (excluding input)
                     input_length = len(batch["input_ids"][i])
-                    generated_ids = outputs[i][input_length:]  # Remove last token if needed
+                    generated_ids = outputs[i][input_length:]
                     speech_tokens_str = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
-                    # Extract speech IDs from token strings like <|s_23456|>
                     speech_ids = extract_speech_ids(speech_tokens_str)
                     print(i, speech_ids)
-                    # breakpoint()
                     if len(speech_ids) == 0:
                         print(f"Warning: No speech tokens generated for sample {batch['ids'][i]}, skipping")
                         continue
@@ -517,7 +478,7 @@ def main(args):
                     llm_post_processing_end_time = time.time()
                     total_llm_post_processing_time += llm_post_processing_end_time - llm_post_processing_start_time
                     if current_prompt_audio is not None:
-                        items_for_token2wav.append({
+                        items_for_token_2wav.append({
                             "speech_ids": speech_ids,
                             "prompt_audio": current_prompt_audio.squeeze(0),
                             "id": batch["ids"][i]
@@ -525,8 +486,8 @@ def main(args):
                     else:
                         print(f"Warning: No prompt audio available for sample {batch['ids'][i]}, skipping")
 
-                for i in range(0, len(items_for_token2wav), args.token2wav_batch_size):
-                    t2w_batch = items_for_token2wav[i:i + args.token2wav_batch_size]
+                for i in range(0, len(items_for_token_2wav), args.token2wav_batch_size):
+                    t2w_batch = items_for_token_2wav[i:i + args.token2wav_batch_size]
                     if not t2w_batch:
                         continue
 
@@ -535,7 +496,6 @@ def main(args):
                     t2w_prompt_audios_sample_rate = [16000] * len(t2w_batch)
                     t2w_ids = [item["id"] for item in t2w_batch]
 
-                    # Generate audio using CosyVoice2
                     token2wav_start_time = time.time()
                     generated_wavs = token2wav_model(
                         t2w_generated_speech_tokens_list,
@@ -547,7 +507,6 @@ def main(args):
                     total_token2wav_time += (token2wav_end_time - token2wav_start_time)
 
                     audio_save_start_time = time.time()
-                    # Convert to numpy and save
                     for j, audio_hat in enumerate(generated_wavs):
                         generated_wave = audio_hat.squeeze().cpu().numpy()
                         total_audio_samples += len(generated_wave)
@@ -571,7 +530,6 @@ def main(args):
 
             log_file_path = os.path.join(args.output_dir, "log.txt")
             with open(log_file_path, 'w') as f:
-                # Convert Namespace to dict for JSON serialization
                 args_dict = vars(args)
                 log_data = {
                     "args": args_dict,
@@ -602,4 +560,4 @@ if __name__ == "__main__":
         from transformers import AutoModelForCausalLM
     else:
         raise ValueError(f"Unsupported backend: {args.backend}")
-    main(args)
+    main(args)

+ 32 - 33
runtime/triton_trtllm/token2wav.py

@@ -70,6 +70,7 @@ def convert_onnx_to_trt(trt_model, trt_kwargs, onnx_model, fp16):
         f.write(engine_bytes)
     logging.info("Succesfully convert onnx to trt...")
 
+
 class TrtContextWrapper:
     def __init__(self, trt_engine, trt_concurrent=1, device='cuda:0'):
         self.trt_context_pool = queue.Queue(maxsize=trt_concurrent)
@@ -88,12 +89,13 @@ class TrtContextWrapper:
     def release_estimator(self, context, stream):
         self.trt_context_pool.put([context, stream])
 
+
 class CosyVoice2_Token2Wav(torch.nn.Module):
     def __init__(self, model_dir: str = "./CosyVoice2-0.5B", enable_trt: bool = False, device_id: int = 0):
         super().__init__()
         self.device_id = device_id
         self.device = f"cuda:{device_id}"
-        
+
         self.flow = CausalMaskedDiffWithXvec()
         self.flow.half()
         self.flow.load_state_dict(torch.load(f"{model_dir}/flow.pt", map_location="cpu", weights_only=True), strict=True)
@@ -107,22 +109,20 @@ class CosyVoice2_Token2Wav(torch.nn.Module):
         option = onnxruntime.SessionOptions()
         option.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL
         option.intra_op_num_threads = 1
-        self.spk_model = onnxruntime.InferenceSession(f"{model_dir}/campplus.onnx", sess_options=option,
-                                                    providers=["CPUExecutionProvider"])
-        
+        self.spk_model = onnxruntime.InferenceSession(f"{model_dir}/campplus.onnx", sess_options=option, providers=["CPUExecutionProvider"])
+
         self.audio_tokenizer = s3tokenizer.load_model(f"{model_dir}/speech_tokenizer_v2.onnx").to(self.device).eval()
 
-        gpu="l20"
+        gpu = "l20"
         if enable_trt:
             self.load_trt(f'{model_dir}/flow.decoder.estimator.fp16.dynamic_batch.{gpu}.plan',
-                                f'{model_dir}/flow.decoder.estimator.fp32.dynamic_batch.onnx',
-                                1,
-                                True)
+                          f'{model_dir}/flow.decoder.estimator.fp32.dynamic_batch.onnx',
+                          1,
+                          True)
             self.load_spk_trt(f'{model_dir}/campplus.{gpu}.fp32.trt',
-                                f'{model_dir}/campplus.onnx',
-                                1,
-                                False)
-
+                              f'{model_dir}/campplus.onnx',
+                              1,
+                              False)
 
     def forward_spk_embedding(self, spk_feat):
         if isinstance(self.spk_model, onnxruntime.InferenceSession):
@@ -173,7 +173,7 @@ class CosyVoice2_Token2Wav(torch.nn.Module):
     def load_trt(self, flow_decoder_estimator_model, flow_decoder_onnx_model, trt_concurrent=1, fp16=True):
         assert torch.cuda.is_available(), 'tensorrt only supports gpu!'
         if not os.path.exists(flow_decoder_estimator_model) or os.path.getsize(flow_decoder_estimator_model) == 0:
-            trt_kwargs = self.get_trt_kwargs_dynamic_batch(opt_batch_size=2, max_batch_size=16)
+            trt_kwargs = self.get_trt_kwargs_dynamic_batch(opt_bs=2, max_batch_size=16)
             convert_onnx_to_trt(flow_decoder_estimator_model, trt_kwargs, flow_decoder_onnx_model, fp16)
         del self.flow.decoder.estimator
         import tensorrt as trt
@@ -182,10 +182,11 @@ class CosyVoice2_Token2Wav(torch.nn.Module):
         assert estimator_engine is not None, 'failed to load trt {}'.format(flow_decoder_estimator_model)
         self.flow.decoder.estimator = TrtContextWrapper(estimator_engine, trt_concurrent=trt_concurrent, device=self.device)
 
-    def get_trt_kwargs_dynamic_batch(self, opt_batch_size=2, max_batch_size=64):
+    def get_trt_kwargs_dynamic_batch(self, opt_bs=2, max_batch_size=64):
         min_shape = [(2, 80, 4), (2, 1, 4), (2, 80, 4), (2, 80, 4), (2,), (2, 80)]
-        opt_shape = [(opt_batch_size*2, 80, 500), (opt_batch_size*2, 1, 500), (opt_batch_size*2, 80, 500), (opt_batch_size*2, 80, 500), (opt_batch_size*2,), (opt_batch_size*2, 80)]
-        max_shape = [(max_batch_size*2, 80, 3000), (max_batch_size*2, 1, 3000), (max_batch_size*2, 80, 3000), (max_batch_size*2, 80, 3000), (max_batch_size*2,), (max_batch_size*2, 80)]
+        opt_shape = [(opt_bs * 2, 80, 500), (opt_bs * 2, 1, 500), (opt_bs * 2, 80, 500), (opt_bs * 2, 80, 500), (opt_bs * 2,), (opt_bs * 2, 80)]
+        max_shape = [(max_batch_size * 2, 80, 3000), (max_batch_size * 2, 1, 3000), (max_batch_size * 2, 80, 3000), (max_batch_size * 2, 80, 3000), (max_batch_size * 2,),
+                     (max_batch_size * 2, 80)]
         input_names = ["x", "mask", "mu", "cond", "t", "spks"]
         return {'min_shape': min_shape, 'opt_shape': opt_shape, 'max_shape': max_shape, 'input_names': input_names}
 
@@ -203,7 +204,7 @@ class CosyVoice2_Token2Wav(torch.nn.Module):
             speech_tokens_i = prompt_speech_tokens[i, :prompt_speech_tokens_lens[i].item()].tolist()
             prompt_speech_tokens_list.append(speech_tokens_i)
         return prompt_speech_tokens_list
-    
+
     def get_spk_emb(self, prompt_audios_list: list[torch.Tensor]) -> torch.Tensor:
         spk_emb_for_flow = []
         for audio in prompt_audios_list:
@@ -213,9 +214,9 @@ class CosyVoice2_Token2Wav(torch.nn.Module):
             spk_emb = self.forward_spk_embedding(spk_feat)
 
             spk_emb_for_flow.append(spk_emb)
-        spk_emb_for_flow = torch.tensor(spk_emb_for_flow)    
+        spk_emb_for_flow = torch.tensor(spk_emb_for_flow)
         return spk_emb_for_flow
-    
+
     def get_prompt_mels(self, prompt_audios_list: list[torch.Tensor], prompt_audios_sample_rate: list[int]):
         prompt_mels_for_flow = []
         prompt_mels_lens_for_flow = []
@@ -231,9 +232,9 @@ class CosyVoice2_Token2Wav(torch.nn.Module):
         prompt_mels_for_flow = torch.nn.utils.rnn.pad_sequence(prompt_mels_for_flow, batch_first=True, padding_value=0)  # [B, T', num_mels=80]
         prompt_mels_lens_for_flow = torch.tensor(prompt_mels_lens_for_flow)
         return prompt_mels_for_flow, prompt_mels_lens_for_flow
-    
 
-    def forward_flow(self, prompt_speech_tokens_list: list[list[int]], generated_speech_tokens_list: list[list[int]], prompt_mels_for_flow: torch.Tensor, prompt_mels_lens_for_flow: torch.Tensor, spk_emb_for_flow: torch.Tensor):
+    def forward_flow(self, prompt_speech_tokens_list: list[list[int]], generated_speech_tokens_list: list[list[int]], prompt_mels_for_flow: torch.Tensor,
+                     prompt_mels_lens_for_flow: torch.Tensor, spk_emb_for_flow: torch.Tensor):
         batch_size = prompt_mels_for_flow.shape[0]
         flow_inputs = []
         flow_inputs_lens = []
@@ -262,14 +263,12 @@ class CosyVoice2_Token2Wav(torch.nn.Module):
             generated_wavs.append(wav)
         return generated_wavs
 
-
     @torch.inference_mode()
     def forward(
         self, generated_speech_tokens_list: list[list[int]], prompt_audios_list: list[torch.Tensor], prompt_audios_sample_rate: list[int]
     ):
         # assert all item in prompt_audios_sample_rate is 16000
         assert all(sample_rate == 16000 for sample_rate in prompt_audios_sample_rate)
-        
 
         prompt_speech_tokens_list = self.prompt_audio_tokenization(prompt_audios_list)
 
@@ -277,10 +276,11 @@ class CosyVoice2_Token2Wav(torch.nn.Module):
 
         spk_emb_for_flow = self.get_spk_emb(prompt_audios_list)
 
-        generated_mels, generated_mels_lens = self.forward_flow(prompt_speech_tokens_list, generated_speech_tokens_list, prompt_mels_for_flow, prompt_mels_lens_for_flow, spk_emb_for_flow)
+        generated_mels, generated_mels_lens = self.forward_flow(
+            prompt_speech_tokens_list, generated_speech_tokens_list, prompt_mels_for_flow, prompt_mels_lens_for_flow, spk_emb_for_flow)
 
         generated_wavs = self.forward_hift(generated_mels, generated_mels_lens, prompt_mels_lens_for_flow)
-        
+
         return generated_wavs
 
 
@@ -288,13 +288,14 @@ def collate_fn(batch):
     ids, generated_speech_tokens_list, prompt_audios_list, prompt_audios_sample_rate = [], [], [], []
     for i, item in enumerate(batch):
         generated_speech_tokens_list.append(item['target_audio_cosy2_tokens'])
-        audio = torch.from_numpy(item['prompt_audio']['array']).float() 
+        audio = torch.from_numpy(item['prompt_audio']['array']).float()
         prompt_audios_list.append(audio)
         prompt_audios_sample_rate.append(item['prompt_audio']['sampling_rate'])
         ids.append(item['id'])
 
     return ids, generated_speech_tokens_list, prompt_audios_list, prompt_audios_sample_rate
 
+
 def get_args():
     parser = argparse.ArgumentParser()
     parser.add_argument("--enable-trt", action="store_true")
@@ -305,6 +306,7 @@ def get_args():
     parser.add_argument("--warmup", type=int, default=3, help="Number of warmup epochs, performance statistics will only be collected from the last epoch")
     return parser.parse_args()
 
+
 if __name__ == "__main__":
     args = get_args()
     model = CosyVoice2_Token2Wav(model_dir=args.model_dir, enable_trt=args.enable_trt)
@@ -315,22 +317,19 @@ if __name__ == "__main__":
 
     dataset = load_dataset(dataset_name, split=args.huggingface_dataset_split, trust_remote_code=True)
 
-
     data_loader = DataLoader(dataset, batch_size=args.batch_size, shuffle=False, collate_fn=collate_fn, num_workers=0)
-    
-    
+
     for epoch in range(args.warmup):
         start_time = time.time()
-        
+
         for batch in data_loader:
             ids, generated_speech_tokens_list, prompt_audios_list, prompt_audios_sample_rate = batch
 
             generated_wavs = model(generated_speech_tokens_list, prompt_audios_list, prompt_audios_sample_rate)
-            
 
             for id, wav in zip(ids, generated_wavs):
                 torchaudio.save(f"{args.output_dir}/{id}.wav", wav.cpu(), 24000)
-        
+
         end_time = time.time()
         epoch_time = end_time - start_time
-        print(f"Measurement epoch time taken: {epoch_time:.4f} seconds")
+        print(f"Measurement epoch time taken: {epoch_time:.4f} seconds")