|
@@ -1,119 +1,77 @@
|
|
|
-# Set inference model
|
|
|
|
|
-# export MODEL_DIR=pretrained_models/CosyVoice-300M-Instruct
|
|
|
|
|
-# For development
|
|
|
|
|
-# fastapi dev --port 6006 fastapi_server.py
|
|
|
|
|
-# For production deployment
|
|
|
|
|
-# fastapi run --port 6006 fastapi_server.py
|
|
|
|
|
-
|
|
|
|
|
|
|
+# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu)
|
|
|
|
|
+#
|
|
|
|
|
+# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
|
+# you may not use this file except in compliance with the License.
|
|
|
|
|
+# You may obtain a copy of the License at
|
|
|
|
|
+#
|
|
|
|
|
+# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
|
+#
|
|
|
|
|
+# Unless required by applicable law or agreed to in writing, software
|
|
|
|
|
+# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
|
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
|
+# See the License for the specific language governing permissions and
|
|
|
|
|
+# limitations under the License.
|
|
|
import os
|
|
import os
|
|
|
import sys
|
|
import sys
|
|
|
-import io,time
|
|
|
|
|
-from fastapi import FastAPI, Response, File, UploadFile, Form
|
|
|
|
|
-from fastapi.responses import HTMLResponse
|
|
|
|
|
-from fastapi.middleware.cors import CORSMiddleware #引入 CORS中间件模块
|
|
|
|
|
-from contextlib import asynccontextmanager
|
|
|
|
|
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
|
|
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
|
|
|
sys.path.append('{}/../../..'.format(ROOT_DIR))
|
|
sys.path.append('{}/../../..'.format(ROOT_DIR))
|
|
|
sys.path.append('{}/../../../third_party/Matcha-TTS'.format(ROOT_DIR))
|
|
sys.path.append('{}/../../../third_party/Matcha-TTS'.format(ROOT_DIR))
|
|
|
-from cosyvoice.cli.cosyvoice import CosyVoice
|
|
|
|
|
-from cosyvoice.utils.file_utils import load_wav
|
|
|
|
|
-import numpy as np
|
|
|
|
|
-import torch
|
|
|
|
|
-import torchaudio
|
|
|
|
|
|
|
+import argparse
|
|
|
import logging
|
|
import logging
|
|
|
logging.getLogger('matplotlib').setLevel(logging.WARNING)
|
|
logging.getLogger('matplotlib').setLevel(logging.WARNING)
|
|
|
|
|
+from fastapi import FastAPI, UploadFile, Form, File
|
|
|
|
|
+from fastapi.responses import StreamingResponse
|
|
|
|
|
+from fastapi.middleware.cors import CORSMiddleware
|
|
|
|
|
+import uvicorn
|
|
|
|
|
+import numpy as np
|
|
|
|
|
+from cosyvoice.cli.cosyvoice import CosyVoice
|
|
|
|
|
+from cosyvoice.utils.file_utils import load_wav
|
|
|
|
|
|
|
|
-class LaunchFailed(Exception):
|
|
|
|
|
- pass
|
|
|
|
|
-
|
|
|
|
|
-@asynccontextmanager
|
|
|
|
|
-async def lifespan(app: FastAPI):
|
|
|
|
|
- model_dir = os.getenv("MODEL_DIR", "pretrained_models/CosyVoice-300M-SFT")
|
|
|
|
|
- if model_dir:
|
|
|
|
|
- logging.info("MODEL_DIR is {}", model_dir)
|
|
|
|
|
- app.cosyvoice = CosyVoice(model_dir)
|
|
|
|
|
- # sft usage
|
|
|
|
|
- logging.info("Avaliable speakers {}", app.cosyvoice.list_avaliable_spks())
|
|
|
|
|
- else:
|
|
|
|
|
- raise LaunchFailed("MODEL_DIR environment must set")
|
|
|
|
|
- yield
|
|
|
|
|
-
|
|
|
|
|
-app = FastAPI(lifespan=lifespan)
|
|
|
|
|
-
|
|
|
|
|
-#设置允许访问的域名
|
|
|
|
|
-origins = ["*"] #"*",即为所有,也可以改为允许的特定ip。
|
|
|
|
|
|
|
+app = FastAPI()
|
|
|
|
|
+# set cross region allowance
|
|
|
app.add_middleware(
|
|
app.add_middleware(
|
|
|
- CORSMiddleware,
|
|
|
|
|
- allow_origins=origins, #设置允许的origins来源
|
|
|
|
|
|
|
+ CORSMiddleware,
|
|
|
|
|
+ allow_origins=["*"],
|
|
|
allow_credentials=True,
|
|
allow_credentials=True,
|
|
|
- allow_methods=["*"], # 设置允许跨域的http方法,比如 get、post、put等。
|
|
|
|
|
- allow_headers=["*"]) #允许跨域的headers,可以用来鉴别来源等作用。
|
|
|
|
|
-
|
|
|
|
|
-def buildResponse(output):
|
|
|
|
|
- buffer = io.BytesIO()
|
|
|
|
|
- torchaudio.save(buffer, output, 22050, format="wav")
|
|
|
|
|
- buffer.seek(0)
|
|
|
|
|
- return Response(content=buffer.read(-1), media_type="audio/wav")
|
|
|
|
|
-
|
|
|
|
|
-@app.post("/api/inference/sft")
|
|
|
|
|
-@app.get("/api/inference/sft")
|
|
|
|
|
-async def sft(tts: str = Form(), role: str = Form()):
|
|
|
|
|
- start = time.process_time()
|
|
|
|
|
- output = app.cosyvoice.inference_sft(tts, role)
|
|
|
|
|
- end = time.process_time()
|
|
|
|
|
- logging.info("infer time is {} seconds", end-start)
|
|
|
|
|
- return buildResponse(output['tts_speech'])
|
|
|
|
|
-
|
|
|
|
|
-@app.post("/api/inference/zero-shot")
|
|
|
|
|
-async def zeroShot(tts: str = Form(), prompt: str = Form(), audio: UploadFile = File()):
|
|
|
|
|
- start = time.process_time()
|
|
|
|
|
- prompt_speech = load_wav(audio.file, 16000)
|
|
|
|
|
- prompt_audio = (prompt_speech.numpy() * (2**15)).astype(np.int16).tobytes()
|
|
|
|
|
- prompt_speech_16k = torch.from_numpy(np.array(np.frombuffer(prompt_audio, dtype=np.int16))).unsqueeze(dim=0)
|
|
|
|
|
- prompt_speech_16k = prompt_speech_16k.float() / (2**15)
|
|
|
|
|
|
|
+ allow_methods=["*"],
|
|
|
|
|
+ allow_headers=["*"])
|
|
|
|
|
|
|
|
- output = app.cosyvoice.inference_zero_shot(tts, prompt, prompt_speech_16k)
|
|
|
|
|
- end = time.process_time()
|
|
|
|
|
- logging.info("infer time is {} seconds", end-start)
|
|
|
|
|
- return buildResponse(output['tts_speech'])
|
|
|
|
|
|
|
+def generate_data(model_output):
|
|
|
|
|
+ for i in model_output:
|
|
|
|
|
+ tts_audio = (i['tts_speech'].numpy() * (2 ** 15)).astype(np.int16).tobytes()
|
|
|
|
|
+ yield tts_audio
|
|
|
|
|
|
|
|
-@app.post("/api/inference/cross-lingual")
|
|
|
|
|
-async def crossLingual(tts: str = Form(), audio: UploadFile = File()):
|
|
|
|
|
- start = time.process_time()
|
|
|
|
|
- prompt_speech = load_wav(audio.file, 16000)
|
|
|
|
|
- prompt_audio = (prompt_speech.numpy() * (2**15)).astype(np.int16).tobytes()
|
|
|
|
|
- prompt_speech_16k = torch.from_numpy(np.array(np.frombuffer(prompt_audio, dtype=np.int16))).unsqueeze(dim=0)
|
|
|
|
|
- prompt_speech_16k = prompt_speech_16k.float() / (2**15)
|
|
|
|
|
|
|
+@app.get("/inference_sft")
|
|
|
|
|
+async def inference_sft(tts_text: str = Form(), spk_id: str = Form()):
|
|
|
|
|
+ model_output = cosyvoice.inference_sft(tts_text, spk_id)
|
|
|
|
|
+ return StreamingResponse(generate_data(model_output))
|
|
|
|
|
|
|
|
- output = app.cosyvoice.inference_cross_lingual(tts, prompt_speech_16k)
|
|
|
|
|
- end = time.process_time()
|
|
|
|
|
- logging.info("infer time is {} seconds", end-start)
|
|
|
|
|
- return buildResponse(output['tts_speech'])
|
|
|
|
|
|
|
+@app.get("/inference_zero_shot")
|
|
|
|
|
+async def inference_zero_shot(tts_text: str = Form(), prompt_text: str = Form(), prompt_wav: UploadFile = File()):
|
|
|
|
|
+ prompt_speech_16k = load_wav(prompt_wav.file, 16000)
|
|
|
|
|
+ model_output = cosyvoice.inference_zero_shot(tts_text, prompt_text, prompt_speech_16k)
|
|
|
|
|
+ return StreamingResponse(generate_data(model_output))
|
|
|
|
|
|
|
|
-@app.post("/api/inference/instruct")
|
|
|
|
|
-@app.get("/api/inference/instruct")
|
|
|
|
|
-async def instruct(tts: str = Form(), role: str = Form(), instruct: str = Form()):
|
|
|
|
|
- start = time.process_time()
|
|
|
|
|
- output = app.cosyvoice.inference_instruct(tts, role, instruct)
|
|
|
|
|
- end = time.process_time()
|
|
|
|
|
- logging.info("infer time is {} seconds", end-start)
|
|
|
|
|
- return buildResponse(output['tts_speech'])
|
|
|
|
|
|
|
+@app.get("/inference_cross_lingual")
|
|
|
|
|
+async def inference_cross_lingual(tts_text: str = Form(), prompt_wav: UploadFile = File()):
|
|
|
|
|
+ prompt_speech_16k = load_wav(prompt_wav.file, 16000)
|
|
|
|
|
+ model_output = cosyvoice.inference_cross_lingual(tts_text, prompt_speech_16k)
|
|
|
|
|
+ return StreamingResponse(generate_data(model_output))
|
|
|
|
|
|
|
|
-@app.get("/api/roles")
|
|
|
|
|
-async def roles():
|
|
|
|
|
- return {"roles": app.cosyvoice.list_avaliable_spks()}
|
|
|
|
|
|
|
+@app.get("/inference_instruct")
|
|
|
|
|
+async def inference_instruct(tts_text: str = Form(), spk_id: str = Form(), instruct_text: str = Form()):
|
|
|
|
|
+ model_output = cosyvoice.inference_instruct(tts_text, spk_id, instruct_text)
|
|
|
|
|
+ return StreamingResponse(generate_data(model_output))
|
|
|
|
|
|
|
|
-@app.get("/", response_class=HTMLResponse)
|
|
|
|
|
-async def root():
|
|
|
|
|
- return """
|
|
|
|
|
- <!DOCTYPE html>
|
|
|
|
|
- <html lang=zh-cn>
|
|
|
|
|
- <head>
|
|
|
|
|
- <meta charset=utf-8>
|
|
|
|
|
- <title>Api information</title>
|
|
|
|
|
- </head>
|
|
|
|
|
- <body>
|
|
|
|
|
- Get the supported tones from the Roles API first, then enter the tones and textual content in the TTS API for synthesis. <a href='./docs'>Documents of API</a>
|
|
|
|
|
- </body>
|
|
|
|
|
- </html>
|
|
|
|
|
- """
|
|
|
|
|
|
|
+if __name__=='__main__':
|
|
|
|
|
+ parser = argparse.ArgumentParser()
|
|
|
|
|
+ parser.add_argument('--port',
|
|
|
|
|
+ type=int,
|
|
|
|
|
+ default=50000)
|
|
|
|
|
+ parser.add_argument('--model_dir',
|
|
|
|
|
+ type=str,
|
|
|
|
|
+ default='iic/CosyVoice-300M',
|
|
|
|
|
+ help='local path or modelscope repo id')
|
|
|
|
|
+ args = parser.parse_args()
|
|
|
|
|
+ cosyvoice = CosyVoice(args.model_dir)
|
|
|
|
|
+ uvicorn.run(app, host="127.0.0.1", port=args.port)
|