|
|
@@ -0,0 +1,106 @@
|
|
|
+## Accelerating CosyVoice with DiT-based Token2Wav, NVIDIA Triton Inference Server and TensorRT-LLM
|
|
|
+
|
|
|
+Contributed by Yuekai Zhang (NVIDIA).
|
|
|
+
|
|
|
+This document describes how to accelerate CosyVoice with a DiT-based Token2Wav module from Step-Audio2, using NVIDIA Triton Inference Server and TensorRT-LLM.
|
|
|
+
|
|
|
+### Quick Start
|
|
|
+
|
|
|
+Launch the service directly with Docker Compose:
|
|
|
+```sh
|
|
|
+docker compose -f docker-compose.dit.yml up
|
|
|
+```
|
|
|
+
|
|
|
+### Build the Docker Image
|
|
|
+
|
|
|
+To build the image from scratch:
|
|
|
+```sh
|
|
|
+docker build . -f Dockerfile.server -t soar97/triton-cosyvoice:25.06
|
|
|
+```
|
|
|
+
|
|
|
+### Run a Docker Container
|
|
|
+```sh
|
|
|
+your_mount_dir=/mnt:/mnt
|
|
|
+docker run -it --name "cosyvoice-server" --gpus all --net host -v $your_mount_dir --shm-size=2g soar97/triton-cosyvoice:25.06
|
|
|
+```
|
|
|
+
|
|
|
+### Understanding `run_stepaudio2_dit_token2wav.sh`
|
|
|
+
|
|
|
+The `run_stepaudio2_dit_token2wav.sh` script orchestrates the entire workflow through numbered stages.
|
|
|
+
|
|
|
+You can run a subset of stages with:
|
|
|
+```sh
|
|
|
+bash run_stepaudio2_dit_token2wav.sh <start_stage> <stop_stage>
|
|
|
+```
|
|
|
+- `<start_stage>`: The stage to start from.
|
|
|
+- `<stop_stage>`: The stage to stop after.
|
|
|
+
|
|
|
+**Stages:**
|
|
|
+
|
|
|
+- **Stage -1**: Clones the `Step-Audio2` and `CosyVoice` repositories.
|
|
|
+- **Stage 0**: Downloads the `cosyvoice2_llm`, `CosyVoice2-0.5B`, and `Step-Audio-2-mini` models.
|
|
|
+- **Stage 1**: Converts the HuggingFace checkpoint for the LLM to the TensorRT-LLM format and builds the TensorRT engines.
|
|
|
+- **Stage 2**: Creates the Triton model repository, including configurations for `cosyvoice2_dit` and `token2wav_dit`.
|
|
|
+- **Stage 3**: Launches the Triton Inference Server for Token2Wav module and uses `trtllm-serve` to deploy Cosyvoice2 LLM.
|
|
|
+- **Stage 4**: Runs the gRPC benchmark client for performance testing.
|
|
|
+- **Stage 5**: Runs the offline TTS inference benchmark test.
|
|
|
+- **Stage 6**: Runs a standalone inference script for the Step-Audio2-mini DiT Token2Wav model.
|
|
|
+
|
|
|
+### Export Models and Launch Server
|
|
|
+
|
|
|
+Inside the Docker container, prepare the models and start the Triton server by running stages 0-3:
|
|
|
+```sh
|
|
|
+# This command runs stages 0, 1, 2, and 3
|
|
|
+bash run_stepaudio2_dit_token2wav.sh 0 3
|
|
|
+```
|
|
|
+
|
|
|
+### Benchmark with client-server mode
|
|
|
+
|
|
|
+To benchmark the running Triton server, run stage 4:
|
|
|
+```sh
|
|
|
+bash run_stepaudio2_dit_token2wav.sh 4 4
|
|
|
+
|
|
|
+# You can customize parameters such as the number of tasks inside the script.
|
|
|
+```
|
|
|
+The following results were obtained by decoding on a single L20 GPU with the `yuekai/seed_tts_cosy2` dataset.
|
|
|
+
|
|
|
+#### Total Request Latency
|
|
|
+
|
|
|
+| Concurrent Tasks | RTF | Average (ms) | 50th Percentile (ms) | 90th Percentile (ms) | 95th Percentile (ms) | 99th Percentile (ms) |
|
|
|
+| ---------------- | ------ | ------------ | -------------------- | -------------------- | -------------------- | -------------------- |
|
|
|
+| 1 | 0.1228 | 833.66 | 779.98 | 1297.05 | 1555.97 | 1653.02 |
|
|
|
+| 2 | 0.0901 | 1166.23 | 1124.69 | 1762.76 | 1900.64 | 2204.14 |
|
|
|
+| 4 | 0.0741 | 1849.30 | 1759.42 | 2624.50 | 2822.20 | 3128.42 |
|
|
|
+| 6 | 0.0774 | 2936.13 | 3054.64 | 3849.60 | 3900.49 | 4245.79 |
|
|
|
+| 8 | 0.0691 | 3408.56 | 3434.98 | 4547.13 | 5047.76 | 5346.53 |
|
|
|
+| 10 | 0.0707 | 4306.56 | 4343.44 | 5769.64 | 5876.09 | 5939.79 |
|
|
|
+
|
|
|
+#### First Chunk Latency
|
|
|
+
|
|
|
+| Concurrent Tasks | Average (ms) | 50th Percentile (ms) | 90th Percentile (ms) | 95th Percentile (ms) | 99th Percentile (ms) |
|
|
|
+| ---------------- | ------------ | -------------------- | -------------------- | -------------------- | -------------------- |
|
|
|
+| 1 | 197.50 | 196.13 | 214.65 | 215.96 | 229.21 |
|
|
|
+| 2 | 281.15 | 278.20 | 345.18 | 361.79 | 395.97 |
|
|
|
+| 4 | 510.65 | 530.50 | 630.13 | 642.44 | 666.65 |
|
|
|
+| 6 | 921.54 | 918.86 | 1079.97 | 1265.22 | 1524.41 |
|
|
|
+| 8 | 1019.95 | 1085.26 | 1371.05 | 1402.24 | 1410.66 |
|
|
|
+| 10 | 1214.98 | 1293.54 | 1575.36 | 1654.51 | 2161.76 |
|
|
|
+
|
|
|
+### Benchmark with offline inference mode
|
|
|
+For offline inference mode benchmark, please run stage 5:
|
|
|
+```sh
|
|
|
+bash run_stepaudio2_dit_token2wav.sh 5 5
|
|
|
+```
|
|
|
+
|
|
|
+The following results were obtained by decoding on a single L20 GPU with the `yuekai/seed_tts_cosy2` dataset.
|
|
|
+
|
|
|
+#### Offline TTS (Cosyvoice2 0.5B LLM + StepAudio2 DiT Token2Wav)
|
|
|
+| Backend | Batch Size | llm_time_seconds | total_time_seconds | RTF |
|
|
|
+|---------|------------|------------------|-----------------------|--|
|
|
|
+| TRTLLM | 16 | 2.01 | 5.03 | 0.0292 |
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+### Acknowledgements
|
|
|
+
|
|
|
+This work originates from the NVIDIA CISI project. For more multimodal resources, please see [mair-hub](https://github.com/nvidia-china-sae/mair-hub).
|