Ver Fonte

fix lint

lyuxiang.lx há 3 meses atrás
pai
commit
9b052a94c4

+ 1 - 1
.github/workflows/lint.yml

@@ -52,5 +52,5 @@ jobs:
           set -eux
           pip install flake8==3.8.2 flake8-bugbear flake8-comprehensions flake8-executable flake8-pyi==20.5.0 mccabe pycodestyle==2.6.0 pyflakes==2.2.0
           flake8 --version
-          flake8 --max-line-length 180 --ignore B006,B008,B905,C408,E402,E731,E741,W503,W504 --exclude ./third_party/,./runtime/python/grpc/cosyvoice_pb2*py
+          flake8 --max-line-length 180 --ignore B006,B008,B905,C408,E402,E731,E741,W503,W504,F401,F403,F405,F841 --exclude ./third_party/,./runtime/python/grpc/cosyvoice_pb2*py
           if [ $? != 0 ]; then exit 1; fi

+ 4 - 2
cosyvoice/cli/cosyvoice.py

@@ -48,7 +48,7 @@ class CosyVoice:
         if torch.cuda.is_available() is False and (load_jit is True or load_trt is True or fp16 is True):
             load_jit, load_trt, fp16 = False, False, False
             logging.warning('no cuda device, set load_jit/load_trt/fp16 to False')
-        self.model = CosyVoiceModel(configs['llm'], configs['flow'], configs['hift'], fp16, trt_concurrent)
+        self.model = CosyVoiceModel(configs['llm'], configs['flow'], configs['hift'], fp16)
         self.model.load('{}/llm.pt'.format(model_dir),
                         '{}/flow.pt'.format(model_dir),
                         '{}/hift.pt'.format(model_dir))
@@ -59,6 +59,7 @@ class CosyVoice:
         if load_trt:
             self.model.load_trt('{}/flow.decoder.estimator.{}.mygpu.plan'.format(model_dir, 'fp16' if self.fp16 is True else 'fp32'),
                                 '{}/flow.decoder.estimator.fp32.onnx'.format(model_dir),
+                                trt_concurrent,
                                 self.fp16)
         del configs
 
@@ -162,7 +163,7 @@ class CosyVoice2(CosyVoice):
         if torch.cuda.is_available() is False and (load_jit is True or load_trt is True or fp16 is True):
             load_jit, load_trt, fp16 = False, False, False
             logging.warning('no cuda device, set load_jit/load_trt/fp16 to False')
-        self.model = CosyVoice2Model(configs['llm'], configs['flow'], configs['hift'], fp16, trt_concurrent)
+        self.model = CosyVoice2Model(configs['llm'], configs['flow'], configs['hift'], fp16)
         self.model.load('{}/llm.pt'.format(model_dir),
                         '{}/flow.pt'.format(model_dir),
                         '{}/hift.pt'.format(model_dir))
@@ -173,6 +174,7 @@ class CosyVoice2(CosyVoice):
         if load_trt:
             self.model.load_trt('{}/flow.decoder.estimator.{}.mygpu.plan'.format(model_dir, 'fp16' if self.fp16 is True else 'fp32'),
                                 '{}/flow.decoder.estimator.fp32.onnx'.format(model_dir),
+                                trt_concurrent,
                                 self.fp16)
         del configs
 

+ 5 - 10
cosyvoice/cli/model.py

@@ -14,7 +14,6 @@
 # limitations under the License.
 import os
 from typing import Generator
-import queue
 import torch
 import numpy as np
 import threading
@@ -33,14 +32,12 @@ class CosyVoiceModel:
                  llm: torch.nn.Module,
                  flow: torch.nn.Module,
                  hift: torch.nn.Module,
-                 fp16: bool = False,
-                 trt_concurrent: int = 1):
+                 fp16: bool = False):
         self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
         self.llm = llm
         self.flow = flow
         self.hift = hift
         self.fp16 = fp16
-        self.trt_concurrent = trt_concurrent
         if self.fp16 is True:
             self.llm.half()
             self.flow.half()
@@ -85,7 +82,7 @@ class CosyVoiceModel:
         flow_encoder = torch.jit.load(flow_encoder_model, map_location=self.device)
         self.flow.encoder = flow_encoder
 
-    def load_trt(self, flow_decoder_estimator_model, flow_decoder_onnx_model, fp16):
+    def load_trt(self, flow_decoder_estimator_model, flow_decoder_onnx_model, trt_concurrent, fp16):
         assert torch.cuda.is_available(), 'tensorrt only supports gpu!'
         if not os.path.exists(flow_decoder_estimator_model) or os.path.getsize(flow_decoder_estimator_model) == 0:
             convert_onnx_to_trt(flow_decoder_estimator_model, self.get_trt_kwargs(), flow_decoder_onnx_model, fp16)
@@ -94,7 +91,7 @@ class CosyVoiceModel:
         with open(flow_decoder_estimator_model, 'rb') as f:
             estimator_engine = trt.Runtime(trt.Logger(trt.Logger.INFO)).deserialize_cuda_engine(f.read())
         assert estimator_engine is not None, 'failed to load trt {}'.format(flow_decoder_estimator_model)
-        self.flow.decoder.estimator = TrtContextWrapper(estimator_engine, trt_concurrent=self.trt_concurrent, device=self.device)
+        self.flow.decoder.estimator = TrtContextWrapper(estimator_engine, trt_concurrent=trt_concurrent, device=self.device)
 
     def get_trt_kwargs(self):
         min_shape = [(2, 80, 4), (2, 1, 4), (2, 80, 4), (2, 80, 4)]
@@ -104,7 +101,7 @@ class CosyVoiceModel:
         return {'min_shape': min_shape, 'opt_shape': opt_shape, 'max_shape': max_shape, 'input_names': input_names}
 
     def llm_job(self, text, prompt_text, llm_prompt_speech_token, llm_embedding, uuid):
-        with self.llm_context, torch.cuda.amp.autocast(self.fp16):
+        with self.llm_context, torch.cuda.amp.autocast(self.fp16 is True and hasattr(self.llm, 'vllm') is False):
             if isinstance(text, Generator):
                 assert isinstance(self, CosyVoice2Model), 'streaming input text is only implemented for CosyVoice2!'
                 for i in self.llm.inference_bistream(text=text,
@@ -246,14 +243,12 @@ class CosyVoice2Model(CosyVoiceModel):
                  llm: torch.nn.Module,
                  flow: torch.nn.Module,
                  hift: torch.nn.Module,
-                 fp16: bool = False,
-                 trt_concurrent: int = 1):
+                 fp16: bool = False):
         self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
         self.llm = llm
         self.flow = flow
         self.hift = hift
         self.fp16 = fp16
-        self.trt_concurrent = trt_concurrent
         if self.fp16 is True:
             self.llm.half()
             self.flow.half()

+ 6 - 7
cosyvoice/flow/flow_matching.py

@@ -12,7 +12,6 @@
 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 # See the License for the specific language governing permissions and
 # limitations under the License.
-import threading
 import torch
 import torch.nn.functional as F
 from matcha.models.components.flow_matching import BASECFM
@@ -136,12 +135,12 @@ class ConditionalCFM(BASECFM):
                 estimator.set_input_shape('spks', (2, 80))
                 estimator.set_input_shape('cond', (2, 80, x.size(2)))
                 data_ptrs = [x.contiguous().data_ptr(),
-                            mask.contiguous().data_ptr(),
-                            mu.contiguous().data_ptr(),
-                            t.contiguous().data_ptr(),
-                            spks.contiguous().data_ptr(),
-                            cond.contiguous().data_ptr(),
-                            x.data_ptr()]
+                             mask.contiguous().data_ptr(),
+                             mu.contiguous().data_ptr(),
+                             t.contiguous().data_ptr(),
+                             spks.contiguous().data_ptr(),
+                             cond.contiguous().data_ptr(),
+                             x.data_ptr()]
                 for i, j in enumerate(data_ptrs):
                     estimator.set_tensor_address(trt_engine.get_tensor_name(i), j)
                 # run trt engine

+ 4 - 3
cosyvoice/llm/llm.py

@@ -1,4 +1,5 @@
 # Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Zhihao Du)
+#               2025 Alibaba Inc (authors: Xiang Lyu, Yabin Li, Qihua)
 #
 # Licensed under the Apache License, Version 2.0 (the "License");
 # you may not use this file except in compliance with the License.
@@ -295,7 +296,7 @@ class Qwen2LM(TransformerLM):
         # 4. sampling method
         self.sampling = sampling
         self.mix_ratio = mix_ratio
-        
+
         # 5. vllm related
         self.stop_token_ids = [speech_token_size + i for i in range(3)]
         self.vllm_output_queue = {}
@@ -448,8 +449,8 @@ class Qwen2LM(TransformerLM):
             cache = None
             for i in range(max_len):
                 y_pred, cache = self.llm.forward_one_step(lm_input,
-                                                        masks=torch.tril(torch.ones((1, lm_input.shape[1], lm_input.shape[1]), device=lm_input.device)).to(torch.bool),
-                                                        cache=cache)
+                                                          masks=torch.tril(torch.ones((1, lm_input.shape[1], lm_input.shape[1]), device=lm_input.device)).to(torch.bool),
+                                                          cache=cache)
                 logp = self.llm_decoder(y_pred[:, -1]).log_softmax(dim=-1)
                 top_ids = self.sampling_ids(logp.squeeze(dim=0), out_tokens, sampling, ignore_eos=True if i < min_len else False).item()
                 if top_ids == self.speech_token_size:

+ 0 - 212
cosyvoice/llm/llm_vllm.py

@@ -1,212 +0,0 @@
-# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Zhihao Du)
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-#     http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-import time
-import queue
-import asyncio
-import threading
-from typing import List, Generator, AsyncGenerator
-import torch
-from cosyvoice.utils.file_utils import logging
-from cosyvoice.llm.llm import Qwen2LM
-
-# 启用vllm V1版本
-import os
-os.environ["VLLM_USE_V1"] = '1'
-from vllm import ModelRegistry
-from vllm import LLMEngine, AsyncLLMEngine, CompletionOutput
-from vllm.engine.arg_utils import EngineArgs, AsyncEngineArgs
-from vllm.sampling_params import SamplingParams
-
-from cosyvoice.llm.vllm_use_cosyvoice2_model import CosyVoice2Model as CosyVoice2LLM
-ModelRegistry.register_model("CosyVoice2Model", CosyVoice2LLM)
-
-# EngineArgs
-ENGINE_ARGS = {
-    "block_size": 16,
-    "swap_space": 0,
-    # "enforce_eager": True,
-    "gpu_memory_utilization": 0.4,
-    "max_num_batched_tokens": 1024,
-    "max_model_len": 1024,
-    "max_num_seqs": 256,
-    "disable_log_requests": True,
-    "disable_log_stats": True,
-    "dtype": "float16"
-}
-
-from vllm.sampling_params import RequestOutputKind
-# SamplingParams
-SAMPLING_PARAMS = {
-    "temperature": 1,  # 不能低于0.8, 否则会生成非常多的空音频,或者无法正常生成语音Token
-    "top_p": 1,       # 不能低于0.8, 否则会生成非常多的空音频,或者无法正常生成语音Token
-    "top_k": 25,
-    # "min_tokens": 80,       # 不支持设置最小的tokens数量设置,开启后vllm直接崩溃,无法启动
-    # "presence_penalty": 1.0,    # 不支持设置
-    # "frequency_penalty": 0.0,   # 不支持设置
-    "max_tokens": 1024,
-    "detokenize": False,          # 目前 vllm 0.7.3 v1版本中设置无效,待后续版本更新后减少计算
-    "ignore_eos": False,
-    "output_kind": RequestOutputKind.DELTA  # 设置为DELTA,如调整该参数,请同时调整llm_inference的处理代码
-}
-
-def tensor_to_list(tensor: torch.tensor):
-    return tensor.view(-1).cpu().numpy().tolist()
-
-class VllmQwen2LM(Qwen2LM):
-    def __init__(
-            self,
-            model_dir,
-            mix_ratio: List[int] = [5, 15],
-    ):
-        self.fp16 = False
-        self.half = lambda: None
-        self.mix_ratio = mix_ratio
-        # ---------------------------------------------
-        # vllm engine 的参数配置
-        engine_args = AsyncEngineArgs(
-            model=model_dir,
-            **ENGINE_ARGS,
-        )
-        self.llm_engine: AsyncLLMEngine = AsyncLLMEngine.from_engine_args(engine_args)
-
-        self.speech_token_size = 6564       # 6561 + 3
-        self.llm_token_size = 151936        # llm  vocab_size
-        self.sos_eos_token_id = self.speech_token_size + self.llm_token_size + 1
-        self.task_token_id = self.sos_eos_token_id + 1
-        self.zero_token_id = self.task_token_id + 1
-
-        # vllm 的推理任务需要在一个固定的事件循环中,因此启动一个后台线程运行转用于推理任务
-        self.loop = asyncio.new_event_loop()
-        self.loop_thread = threading.Thread(target=self._run_event_loop, daemon=True)
-        self.loop_thread.start()
-
-    def _run_event_loop(self):
-        asyncio.set_event_loop(self.loop)
-        self.loop.run_forever()
-
-    async def async_llm_inference(self, out_queue, prompt_token_ids, request_id, stop_token_ids, max_tokens):
-        sampling_params = SamplingParams(**SAMPLING_PARAMS)
-        sampling_params.stop_token_ids = stop_token_ids or [6561]
-        if max_tokens:
-            sampling_params.max_tokens = max_tokens
-        async for output in self.llm_engine.generate(
-                {
-                    "prompt_token_ids": prompt_token_ids,
-                },
-                sampling_params=sampling_params,
-                request_id=request_id or f"{time.time()}",
-        ):
-            out_queue.put((output.outputs[0], output.finished))
-
-    def llm_inference(self, prompt_token_ids: List[int], request_id: str=None, stop_token_ids=None, max_tokens=None):
-        out_queue = queue.Queue()
-        asyncio.run_coroutine_threadsafe(
-            self.async_llm_inference(out_queue, prompt_token_ids, request_id, stop_token_ids, max_tokens), self.loop
-        )
-        # 接收 out_queue 返回的结果
-        finished = False
-        while not finished:
-            (output, finished) = out_queue.get_nowait() if not out_queue.empty() else out_queue.get()
-            yield output
-
-    def inference(
-            self,
-            text: torch.Tensor,
-            text_len: torch.Tensor,
-            prompt_text: torch.Tensor,
-            prompt_text_len: torch.Tensor,
-            prompt_speech_token: torch.Tensor,
-            prompt_speech_token_len: torch.Tensor,
-            embedding: torch.Tensor,
-            sampling: int = 25,
-            max_token_text_ratio: float = 20,
-            min_token_text_ratio: float = 2,
-    ) -> Generator[torch.Tensor|int, None, None]:
-        prompt_text = tensor_to_list(prompt_text + torch.tensor(6564))
-        prompt_speech_token = tensor_to_list(prompt_speech_token)
-
-        text = tensor_to_list(text + torch.tensor(6564))
-        prompt_token_ids = [self.sos_eos_token_id] + prompt_text + text + \
-                           [self.task_token_id] + prompt_speech_token
-        max_tokens = len(text) * 20
-        for output in self.llm_inference(
-                prompt_token_ids,
-                stop_token_ids=[6561],
-                max_tokens=max_tokens,
-        ):
-            if output.token_ids[-1] == 6561:
-                need_add_tokens = output.token_ids[:-1]
-            else:
-                need_add_tokens = output.token_ids
-            for token in need_add_tokens:
-                yield token
-
-    def inference_bistream(
-            self,
-            text: Generator,
-            prompt_text: torch.Tensor,
-            prompt_text_len: torch.Tensor,
-            prompt_speech_token: torch.Tensor,
-            prompt_speech_token_len: torch.Tensor,
-            embedding: torch.Tensor,
-            sampling: int = 25,
-            max_token_text_ratio: float = 20,
-            min_token_text_ratio: float = 2,
-    ) -> Generator[torch.Tensor, None, None]:
-        prompt_text = tensor_to_list(prompt_text + torch.tensor(6564))
-        prompt_speech_token = tensor_to_list(prompt_speech_token)
-
-        last_tokens = []
-        prompt_token_ids = [self.sos_eos_token_id]
-        text_tokens_cache = prompt_text
-        for this_text in text:
-            this_text = tensor_to_list(this_text + torch.tensor(6564))
-            # text need tokens
-            assert isinstance(this_text, list), "text need token ids List[int]."
-            text_tokens_cache += this_text
-            while len(prompt_speech_token) != 0:
-                if len(text_tokens_cache) >= self.mix_ratio[0]:
-                    text_input_token = text_tokens_cache[:self.mix_ratio[0]]
-                    speech_input_token = prompt_speech_token[:self.mix_ratio[1]]
-                    prompt_token_ids += text_input_token + speech_input_token
-                    # reset the last cache
-                    text_tokens_cache = text_tokens_cache[self.mix_ratio[0]:]
-                    prompt_speech_token = prompt_speech_token[self.mix_ratio[1]:]
-                else:
-                    break
-            if len(prompt_speech_token) == 0:
-                if (len(last_tokens) > 0 and last_tokens[-1] == 6563) or len(prompt_token_ids) == 1:
-                    if len(text_tokens_cache) >= self.mix_ratio[0]:
-                        text_tokens_temp = text_tokens_cache[:self.mix_ratio[0]]
-                        prompt_token_ids += text_tokens_temp
-                        text_tokens_cache = text_tokens_cache[self.mix_ratio[0]:]
-                    else:
-                        continue
-                for output in self.llm_inference(prompt_token_ids, stop_token_ids=[6563]):
-                    last_tokens = output.token_ids
-                    if last_tokens[-1] == 6563:
-                        need_add_tokens = last_tokens[:-1]
-                    else:
-                        need_add_tokens = last_tokens
-                    for token in need_add_tokens:
-                        yield token
-                    prompt_token_ids.extend(need_add_tokens)
-        prompt_token_ids += text_tokens_cache + [self.task_token_id]
-        for output in self.llm_inference(prompt_token_ids, stop_token_ids=[6561]):
-            if output.token_ids[-1] == 6561:
-                need_add_tokens = output.token_ids[:-1]
-            else:
-                need_add_tokens = output.token_ids
-            for token in need_add_tokens:
-                yield token

+ 2 - 1
cosyvoice/utils/file_utils.py

@@ -16,7 +16,8 @@
 
 import os
 import json
-import torch, torchaudio
+import torch
+import torchaudio
 import logging
 logging.getLogger('matplotlib').setLevel(logging.WARNING)
 logging.basicConfig(level=logging.DEBUG,

+ 103 - 0
cosyvoice/vllm/cosyvoice2.py

@@ -0,0 +1,103 @@
+# SPDX-License-Identifier: Apache-2.0
+
+# Adapted from
+# https://github.com/huggingface/transformers/blob/v4.28.0/src/transformers/models/qwen2/modeling_qwen2.py
+# Copyright 2024 The Qwen team.
+# Copyright 2023 The vLLM team.
+# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
+#
+# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
+# and OPT implementations in this library. It has been modified from its
+# original forms to accommodate minor architectural differences compared
+# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+#     http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""Inference-only Qwen2 model compatible with HuggingFace weights."""
+from vllm.model_executor.models.qwen2 import *
+
+
+class CosyVoice2ForCausalLM(nn.Module, SupportsLoRA, SupportsPP):
+    packed_modules_mapping = {
+        "qkv_proj": [
+            "q_proj",
+            "k_proj",
+            "v_proj",
+        ],
+        "gate_up_proj": [
+            "gate_proj",
+            "up_proj",
+        ],
+    }
+
+    def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
+        super().__init__()
+        config = vllm_config.model_config.hf_config
+        quant_config = vllm_config.quant_config
+        lora_config = vllm_config.lora_config
+
+        self.config = config
+        self.lora_config = lora_config
+
+        self.quant_config = quant_config
+        self.model = Qwen2Model(vllm_config=vllm_config,
+                                prefix=maybe_prefix(prefix, "model"))
+
+        if get_pp_group().is_last_rank:
+            if config.tie_word_embeddings:
+                self.lm_head = self.model.embed_tokens
+            else:
+                self.lm_head = ParallelLMHead(config.vocab_size,
+                                              config.hidden_size,
+                                              True,
+                                              quant_config=quant_config,
+                                              prefix=maybe_prefix(
+                                                  prefix, "lm_head"))
+        else:
+            self.lm_head = PPMissingLayer()
+
+        self.logits_processor = LogitsProcessor(config.vocab_size)
+
+        self.make_empty_intermediate_tensors = (
+            self.model.make_empty_intermediate_tensors)
+
+    def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
+        return self.model.get_input_embeddings(input_ids)
+
+    def forward(
+        self,
+        input_ids: torch.Tensor,
+        positions: torch.Tensor,
+        intermediate_tensors: Optional[IntermediateTensors] = None,
+        inputs_embeds: Optional[torch.Tensor] = None,
+    ) -> Union[torch.Tensor, IntermediateTensors]:
+        hidden_states = self.model(input_ids, positions, intermediate_tensors,
+                                   inputs_embeds)
+        return hidden_states
+
+    def compute_logits(
+        self,
+        hidden_states: torch.Tensor,
+        sampling_metadata: SamplingMetadata,
+    ) -> Optional[torch.Tensor]:
+        logits = self.logits_processor(self.lm_head, hidden_states,
+                                       sampling_metadata, self.lm_head.bias)
+        return logits
+
+    def load_weights(self, weights: Iterable[tuple[str,
+                                                   torch.Tensor]]) -> set[str]:
+        loader = AutoWeightsLoader(
+            self,
+            skip_prefixes=(["lm_head."]
+                           if self.config.tie_word_embeddings else None),
+        )
+        return loader.load_weights(weights)