|
|
@@ -122,7 +122,7 @@ class CosyVoiceFrontEnd:
|
|
|
if isinstance(text, Generator):
|
|
|
logging.info('get tts_text generator, will skip text_normalize!')
|
|
|
return [text]
|
|
|
- if text_frontend is False:
|
|
|
+ if text_frontend is False or text == '':
|
|
|
return [text] if split is True else text
|
|
|
text = text.strip()
|
|
|
if self.use_ttsfrd:
|
|
|
@@ -154,24 +154,28 @@ class CosyVoiceFrontEnd:
|
|
|
model_input = {'text': tts_text_token, 'text_len': tts_text_token_len, 'llm_embedding': embedding, 'flow_embedding': embedding}
|
|
|
return model_input
|
|
|
|
|
|
- def frontend_zero_shot(self, tts_text, prompt_text, prompt_speech_16k, resample_rate):
|
|
|
+ def frontend_zero_shot(self, tts_text, prompt_text, prompt_speech_16k, resample_rate, zero_shot_spk_id):
|
|
|
tts_text_token, tts_text_token_len = self._extract_text_token(tts_text)
|
|
|
- prompt_text_token, prompt_text_token_len = self._extract_text_token(prompt_text)
|
|
|
- prompt_speech_resample = torchaudio.transforms.Resample(orig_freq=16000, new_freq=resample_rate)(prompt_speech_16k)
|
|
|
- speech_feat, speech_feat_len = self._extract_speech_feat(prompt_speech_resample)
|
|
|
- speech_token, speech_token_len = self._extract_speech_token(prompt_speech_16k)
|
|
|
- if resample_rate == 24000:
|
|
|
- # cosyvoice2, force speech_feat % speech_token = 2
|
|
|
- token_len = min(int(speech_feat.shape[1] / 2), speech_token.shape[1])
|
|
|
- speech_feat, speech_feat_len[:] = speech_feat[:, :2 * token_len], 2 * token_len
|
|
|
- speech_token, speech_token_len[:] = speech_token[:, :token_len], token_len
|
|
|
- embedding = self._extract_spk_embedding(prompt_speech_16k)
|
|
|
- model_input = {'text': tts_text_token, 'text_len': tts_text_token_len,
|
|
|
- 'prompt_text': prompt_text_token, 'prompt_text_len': prompt_text_token_len,
|
|
|
- 'llm_prompt_speech_token': speech_token, 'llm_prompt_speech_token_len': speech_token_len,
|
|
|
- 'flow_prompt_speech_token': speech_token, 'flow_prompt_speech_token_len': speech_token_len,
|
|
|
- 'prompt_speech_feat': speech_feat, 'prompt_speech_feat_len': speech_feat_len,
|
|
|
- 'llm_embedding': embedding, 'flow_embedding': embedding}
|
|
|
+ if zero_shot_spk_id == '':
|
|
|
+ prompt_text_token, prompt_text_token_len = self._extract_text_token(prompt_text)
|
|
|
+ prompt_speech_resample = torchaudio.transforms.Resample(orig_freq=16000, new_freq=resample_rate)(prompt_speech_16k)
|
|
|
+ speech_feat, speech_feat_len = self._extract_speech_feat(prompt_speech_resample)
|
|
|
+ speech_token, speech_token_len = self._extract_speech_token(prompt_speech_16k)
|
|
|
+ if resample_rate == 24000:
|
|
|
+ # cosyvoice2, force speech_feat % speech_token = 2
|
|
|
+ token_len = min(int(speech_feat.shape[1] / 2), speech_token.shape[1])
|
|
|
+ speech_feat, speech_feat_len[:] = speech_feat[:, :2 * token_len], 2 * token_len
|
|
|
+ speech_token, speech_token_len[:] = speech_token[:, :token_len], token_len
|
|
|
+ embedding = self._extract_spk_embedding(prompt_speech_16k)
|
|
|
+ model_input = {'prompt_text': prompt_text_token, 'prompt_text_len': prompt_text_token_len,
|
|
|
+ 'llm_prompt_speech_token': speech_token, 'llm_prompt_speech_token_len': speech_token_len,
|
|
|
+ 'flow_prompt_speech_token': speech_token, 'flow_prompt_speech_token_len': speech_token_len,
|
|
|
+ 'prompt_speech_feat': speech_feat, 'prompt_speech_feat_len': speech_feat_len,
|
|
|
+ 'llm_embedding': embedding, 'flow_embedding': embedding}
|
|
|
+ else:
|
|
|
+ model_input = self.spk2info[zero_shot_spk_id]
|
|
|
+ model_input['text'] = tts_text_token
|
|
|
+ model_input['text_len'] = tts_text_token_len
|
|
|
return model_input
|
|
|
|
|
|
def frontend_cross_lingual(self, tts_text, prompt_speech_16k, resample_rate):
|