|
|
@@ -12,6 +12,8 @@
|
|
|
# See the License for the specific language governing permissions and
|
|
|
# limitations under the License.
|
|
|
import torch
|
|
|
+import numpy as np
|
|
|
+
|
|
|
|
|
|
class CosyVoiceModel:
|
|
|
|
|
|
@@ -23,6 +25,10 @@ class CosyVoiceModel:
|
|
|
self.llm = llm
|
|
|
self.flow = flow
|
|
|
self.hift = hift
|
|
|
+ self.stream_win_len = 60
|
|
|
+ self.stream_hop_len = 50
|
|
|
+ self.overlap = 4395 # 10 token equals 4395 sample point
|
|
|
+ self.window = np.hamming(2 * self.overlap)
|
|
|
|
|
|
def load(self, llm_model, flow_model, hift_model):
|
|
|
self.llm.load_state_dict(torch.load(llm_model, map_location=self.device))
|
|
|
@@ -36,25 +42,79 @@ class CosyVoiceModel:
|
|
|
prompt_text=torch.zeros(1, 0, dtype=torch.int32), prompt_text_len=torch.zeros(1, dtype=torch.int32),
|
|
|
llm_prompt_speech_token=torch.zeros(1, 0, dtype=torch.int32), llm_prompt_speech_token_len=torch.zeros(1, dtype=torch.int32),
|
|
|
flow_prompt_speech_token=torch.zeros(1, 0, dtype=torch.int32), flow_prompt_speech_token_len=torch.zeros(1, dtype=torch.int32),
|
|
|
- prompt_speech_feat=torch.zeros(1, 0, 80), prompt_speech_feat_len=torch.zeros(1, dtype=torch.int32)):
|
|
|
- tts_speech_token = self.llm.inference(text=text.to(self.device),
|
|
|
- text_len=text_len.to(self.device),
|
|
|
- prompt_text=prompt_text.to(self.device),
|
|
|
- prompt_text_len=prompt_text_len.to(self.device),
|
|
|
- prompt_speech_token=llm_prompt_speech_token.to(self.device),
|
|
|
- prompt_speech_token_len=llm_prompt_speech_token_len.to(self.device),
|
|
|
- embedding=llm_embedding.to(self.device),
|
|
|
- beam_size=1,
|
|
|
- sampling=25,
|
|
|
- max_token_text_ratio=30,
|
|
|
- min_token_text_ratio=3)
|
|
|
- tts_mel = self.flow.inference(token=tts_speech_token,
|
|
|
- token_len=torch.tensor([tts_speech_token.size(1)], dtype=torch.int32).to(self.device),
|
|
|
- prompt_token=flow_prompt_speech_token.to(self.device),
|
|
|
- prompt_token_len=flow_prompt_speech_token_len.to(self.device),
|
|
|
- prompt_feat=prompt_speech_feat.to(self.device),
|
|
|
- prompt_feat_len=prompt_speech_feat_len.to(self.device),
|
|
|
- embedding=flow_embedding.to(self.device))
|
|
|
- tts_speech = self.hift.inference(mel=tts_mel).cpu()
|
|
|
- torch.cuda.empty_cache()
|
|
|
- return {'tts_speech': tts_speech}
|
|
|
+ prompt_speech_feat=torch.zeros(1, 0, 80), prompt_speech_feat_len=torch.zeros(1, dtype=torch.int32), stream=False):
|
|
|
+ if stream is True:
|
|
|
+ tts_speech_token, cache_speech = [], None
|
|
|
+ for i in self.llm.inference(text=text.to(self.device),
|
|
|
+ text_len=text_len.to(self.device),
|
|
|
+ prompt_text=prompt_text.to(self.device),
|
|
|
+ prompt_text_len=prompt_text_len.to(self.device),
|
|
|
+ prompt_speech_token=llm_prompt_speech_token.to(self.device),
|
|
|
+ prompt_speech_token_len=llm_prompt_speech_token_len.to(self.device),
|
|
|
+ embedding=llm_embedding.to(self.device),
|
|
|
+ beam_size=1,
|
|
|
+ sampling=25,
|
|
|
+ max_token_text_ratio=30,
|
|
|
+ min_token_text_ratio=3,
|
|
|
+ stream=stream):
|
|
|
+ tts_speech_token.append(i)
|
|
|
+ if len(tts_speech_token) == self.stream_win_len:
|
|
|
+ this_tts_speech_token = torch.concat(tts_speech_token, dim=1)
|
|
|
+ this_tts_mel = self.flow.inference(token=this_tts_speech_token,
|
|
|
+ token_len=torch.tensor([this_tts_speech_token.size(1)], dtype=torch.int32).to(self.device),
|
|
|
+ prompt_token=flow_prompt_speech_token.to(self.device),
|
|
|
+ prompt_token_len=flow_prompt_speech_token_len.to(self.device),
|
|
|
+ prompt_feat=prompt_speech_feat.to(self.device),
|
|
|
+ prompt_feat_len=prompt_speech_feat_len.to(self.device),
|
|
|
+ embedding=flow_embedding.to(self.device))
|
|
|
+ this_tts_speech = self.hift.inference(mel=this_tts_mel).cpu()
|
|
|
+ # fade in/out if necessary
|
|
|
+ if cache_speech is not None:
|
|
|
+ this_tts_speech[:, :self.overlap] = this_tts_speech[:, :self.overlap] * self.window[:self.overlap] + cache_speech * self.window[-self.overlap:]
|
|
|
+ yield {'tts_speech': this_tts_speech[:, :-self.overlap]}
|
|
|
+ cache_speech = this_tts_speech[:, -self.overlap:]
|
|
|
+ tts_speech_token = tts_speech_token[-(self.stream_win_len - self.stream_hop_len):]
|
|
|
+ # deal with remain tokens
|
|
|
+ if cache_speech is None or len(tts_speech_token) > self.stream_win_len - self.stream_hop_len:
|
|
|
+ this_tts_speech_token = torch.concat(tts_speech_token, dim=1)
|
|
|
+ this_tts_mel = self.flow.inference(token=this_tts_speech_token,
|
|
|
+ token_len=torch.tensor([this_tts_speech_token.size(1)], dtype=torch.int32).to(self.device),
|
|
|
+ prompt_token=flow_prompt_speech_token.to(self.device),
|
|
|
+ prompt_token_len=flow_prompt_speech_token_len.to(self.device),
|
|
|
+ prompt_feat=prompt_speech_feat.to(self.device),
|
|
|
+ prompt_feat_len=prompt_speech_feat_len.to(self.device),
|
|
|
+ embedding=flow_embedding.to(self.device))
|
|
|
+ this_tts_speech = self.hift.inference(mel=this_tts_mel).cpu()
|
|
|
+ if cache_speech is not None:
|
|
|
+ this_tts_speech[:, :self.overlap] = this_tts_speech[:, :self.overlap] * self.window[:self.overlap] + cache_speech * self.window[-self.overlap:]
|
|
|
+ yield {'tts_speech': this_tts_speech}
|
|
|
+ else:
|
|
|
+ assert len(tts_speech_token) == self.stream_win_len - self.stream_hop_len, 'tts_speech_token not equal to {}'.format(self.stream_win_len - self.stream_hop_len)
|
|
|
+ yield {'tts_speech': cache_speech}
|
|
|
+ else:
|
|
|
+ tts_speech_token = []
|
|
|
+ for i in self.llm.inference(text=text.to(self.device),
|
|
|
+ text_len=text_len.to(self.device),
|
|
|
+ prompt_text=prompt_text.to(self.device),
|
|
|
+ prompt_text_len=prompt_text_len.to(self.device),
|
|
|
+ prompt_speech_token=llm_prompt_speech_token.to(self.device),
|
|
|
+ prompt_speech_token_len=llm_prompt_speech_token_len.to(self.device),
|
|
|
+ embedding=llm_embedding.to(self.device),
|
|
|
+ beam_size=1,
|
|
|
+ sampling=25,
|
|
|
+ max_token_text_ratio=30,
|
|
|
+ min_token_text_ratio=3,
|
|
|
+ stream=stream):
|
|
|
+ tts_speech_token.append(i)
|
|
|
+ assert len(tts_speech_token) == 1, 'tts_speech_token len should be 1 when stream is {}'.format(stream)
|
|
|
+ tts_speech_token = torch.concat(tts_speech_token, dim=1)
|
|
|
+ tts_mel = self.flow.inference(token=tts_speech_token,
|
|
|
+ token_len=torch.tensor([tts_speech_token.size(1)], dtype=torch.int32).to(self.device),
|
|
|
+ prompt_token=flow_prompt_speech_token.to(self.device),
|
|
|
+ prompt_token_len=flow_prompt_speech_token_len.to(self.device),
|
|
|
+ prompt_feat=prompt_speech_feat.to(self.device),
|
|
|
+ prompt_feat_len=prompt_speech_feat_len.to(self.device),
|
|
|
+ embedding=flow_embedding.to(self.device))
|
|
|
+ tts_speech = self.hift.inference(mel=tts_mel).cpu()
|
|
|
+ torch.cuda.empty_cache()
|
|
|
+ yield {'tts_speech': tts_speech}
|