|
|
@@ -1,257 +0,0 @@
|
|
|
-# set random seed, so that you may reproduce your result.
|
|
|
-__set_seed1: !apply:random.seed [1986]
|
|
|
-__set_seed2: !apply:numpy.random.seed [1986]
|
|
|
-__set_seed3: !apply:torch.manual_seed [1986]
|
|
|
-__set_seed4: !apply:torch.cuda.manual_seed_all [1986]
|
|
|
-
|
|
|
-# fixed params
|
|
|
-sample_rate: 22050
|
|
|
-text_encoder_input_size: 512
|
|
|
-llm_input_size: 1024
|
|
|
-llm_output_size: 1024
|
|
|
-spk_embed_dim: 192
|
|
|
-
|
|
|
-# model params
|
|
|
-# for all class/function included in this repo, we use !<name> or !<new> for intialization, so that user may find all corresponding class/function according to one single yaml.
|
|
|
-# for system/third_party class/function, we do not require this.
|
|
|
-llm: !new:cosyvoice.llm.llm.TransformerLM
|
|
|
- text_encoder_input_size: !ref <text_encoder_input_size>
|
|
|
- llm_input_size: !ref <llm_input_size>
|
|
|
- llm_output_size: !ref <llm_output_size>
|
|
|
- text_token_size: 51866 # change to 60515 if you want to train with CosyVoice-300M-25Hz recipe
|
|
|
- speech_token_size: 4096
|
|
|
- length_normalized_loss: True
|
|
|
- lsm_weight: 0
|
|
|
- spk_embed_dim: !ref <spk_embed_dim>
|
|
|
- text_encoder: !new:cosyvoice.transformer.encoder.ConformerEncoder
|
|
|
- input_size: !ref <text_encoder_input_size>
|
|
|
- output_size: 1024
|
|
|
- attention_heads: 8
|
|
|
- linear_units: 2048
|
|
|
- num_blocks: 3
|
|
|
- dropout_rate: 0.1
|
|
|
- positional_dropout_rate: 0.1
|
|
|
- attention_dropout_rate: 0.0
|
|
|
- normalize_before: True
|
|
|
- input_layer: 'linear'
|
|
|
- pos_enc_layer_type: 'rel_pos_espnet'
|
|
|
- selfattention_layer_type: 'rel_selfattn'
|
|
|
- use_cnn_module: False
|
|
|
- macaron_style: False
|
|
|
- use_dynamic_chunk: False
|
|
|
- use_dynamic_left_chunk: False
|
|
|
- static_chunk_size: 1
|
|
|
- llm: !new:cosyvoice.transformer.encoder.TransformerEncoder
|
|
|
- input_size: !ref <llm_input_size>
|
|
|
- output_size: !ref <llm_output_size>
|
|
|
- attention_heads: 8
|
|
|
- linear_units: 2048
|
|
|
- num_blocks: 7
|
|
|
- dropout_rate: 0.1
|
|
|
- positional_dropout_rate: 0.1
|
|
|
- attention_dropout_rate: 0.0
|
|
|
- input_layer: 'linear_legacy'
|
|
|
- pos_enc_layer_type: 'rel_pos_espnet'
|
|
|
- selfattention_layer_type: 'rel_selfattn'
|
|
|
- static_chunk_size: 1
|
|
|
- sampling: !name:cosyvoice.utils.common.ras_sampling
|
|
|
- top_p: 0.8
|
|
|
- top_k: 25
|
|
|
- win_size: 10
|
|
|
- tau_r: 0.1
|
|
|
-
|
|
|
-flow: !new:cosyvoice.flow.flow.MaskedDiffWithXvec
|
|
|
- input_size: 512
|
|
|
- output_size: 80
|
|
|
- spk_embed_dim: !ref <spk_embed_dim>
|
|
|
- output_type: 'mel'
|
|
|
- vocab_size: 4096
|
|
|
- input_frame_rate: 50 # change to 25 if you want to train with CosyVoice-300M-25Hz recipe
|
|
|
- only_mask_loss: True
|
|
|
- encoder: !new:cosyvoice.transformer.encoder.ConformerEncoder
|
|
|
- output_size: 512
|
|
|
- attention_heads: 4
|
|
|
- linear_units: 1024
|
|
|
- num_blocks: 3
|
|
|
- dropout_rate: 0.1
|
|
|
- positional_dropout_rate: 0.1
|
|
|
- attention_dropout_rate: 0.1
|
|
|
- normalize_before: True
|
|
|
- input_layer: 'linear'
|
|
|
- pos_enc_layer_type: 'rel_pos_espnet'
|
|
|
- selfattention_layer_type: 'rel_selfattn'
|
|
|
- input_size: 512
|
|
|
- use_cnn_module: False
|
|
|
- macaron_style: False
|
|
|
- length_regulator: !new:cosyvoice.flow.length_regulator.InterpolateRegulator
|
|
|
- channels: 80
|
|
|
- sampling_ratios: [1, 1, 1, 1]
|
|
|
- decoder: !new:cosyvoice.flow.flow_matching.ConditionalCFM
|
|
|
- in_channels: 240
|
|
|
- n_spks: 1
|
|
|
- spk_emb_dim: 80
|
|
|
- cfm_params: !new:omegaconf.DictConfig
|
|
|
- content:
|
|
|
- sigma_min: 1e-06
|
|
|
- solver: 'euler'
|
|
|
- t_scheduler: 'cosine'
|
|
|
- training_cfg_rate: 0.2
|
|
|
- inference_cfg_rate: 0.7
|
|
|
- reg_loss_type: 'l1'
|
|
|
- estimator: !new:cosyvoice.flow.decoder.ConditionalDecoder
|
|
|
- in_channels: 320
|
|
|
- out_channels: 80
|
|
|
- channels: [256, 256]
|
|
|
- dropout: 0.0
|
|
|
- attention_head_dim: 64
|
|
|
- n_blocks: 4
|
|
|
- num_mid_blocks: 8
|
|
|
- num_heads: 8
|
|
|
- act_fn: 'gelu'
|
|
|
-
|
|
|
-hift: !new:cosyvoice.hifigan.generator.HiFTGenerator
|
|
|
- in_channels: 80
|
|
|
- base_channels: 512
|
|
|
- nb_harmonics: 8
|
|
|
- sampling_rate: !ref <sample_rate>
|
|
|
- nsf_alpha: 0.1
|
|
|
- nsf_sigma: 0.003
|
|
|
- nsf_voiced_threshold: 10
|
|
|
- upsample_rates: [8, 8]
|
|
|
- upsample_kernel_sizes: [16, 16]
|
|
|
- istft_params:
|
|
|
- n_fft: 16
|
|
|
- hop_len: 4
|
|
|
- resblock_kernel_sizes: [3, 7, 11]
|
|
|
- resblock_dilation_sizes: [[1, 3, 5], [1, 3, 5], [1, 3, 5]]
|
|
|
- source_resblock_kernel_sizes: [7, 11]
|
|
|
- source_resblock_dilation_sizes: [[1, 3, 5], [1, 3, 5]]
|
|
|
- lrelu_slope: 0.1
|
|
|
- audio_limit: 0.99
|
|
|
- f0_predictor: !new:cosyvoice.hifigan.f0_predictor.ConvRNNF0Predictor
|
|
|
- num_class: 1
|
|
|
- in_channels: 80
|
|
|
- cond_channels: 512
|
|
|
-
|
|
|
-# gan related module
|
|
|
-mel_spec_transform1: !name:matcha.utils.audio.mel_spectrogram
|
|
|
- n_fft: 1024
|
|
|
- num_mels: 80
|
|
|
- sampling_rate: !ref <sample_rate>
|
|
|
- hop_size: 256
|
|
|
- win_size: 1024
|
|
|
- fmin: 0
|
|
|
- fmax: null
|
|
|
- center: False
|
|
|
-hifigan: !new:cosyvoice.hifigan.hifigan.HiFiGan
|
|
|
- generator: !ref <hift>
|
|
|
- discriminator: !new:cosyvoice.hifigan.discriminator.MultipleDiscriminator
|
|
|
- mpd: !new:matcha.hifigan.models.MultiPeriodDiscriminator
|
|
|
- mrd: !new:cosyvoice.hifigan.discriminator.MultiResSpecDiscriminator
|
|
|
- mel_spec_transform: [
|
|
|
- !ref <mel_spec_transform1>
|
|
|
- ]
|
|
|
-
|
|
|
-# processor functions
|
|
|
-parquet_opener: !name:cosyvoice.dataset.processor.parquet_opener
|
|
|
-get_tokenizer: !name:whisper.tokenizer.get_tokenizer # change to !name:cosyvoice.tokenizer.tokenizer.get_tokenizer if you want to train with CosyVoice-300M-25Hz recipe
|
|
|
- multilingual: True
|
|
|
- num_languages: 100
|
|
|
- language: 'en'
|
|
|
- task: 'transcribe'
|
|
|
-allowed_special: 'all'
|
|
|
-tokenize: !name:cosyvoice.dataset.processor.tokenize
|
|
|
- get_tokenizer: !ref <get_tokenizer>
|
|
|
- allowed_special: !ref <allowed_special>
|
|
|
-filter: !name:cosyvoice.dataset.processor.filter
|
|
|
- max_length: 40960
|
|
|
- min_length: 0
|
|
|
- token_max_length: 200
|
|
|
- token_min_length: 1
|
|
|
-resample: !name:cosyvoice.dataset.processor.resample
|
|
|
- resample_rate: !ref <sample_rate>
|
|
|
-truncate: !name:cosyvoice.dataset.processor.truncate
|
|
|
- truncate_length: 24576 # must be a multiplier of hop_size
|
|
|
-feat_extractor: !name:matcha.utils.audio.mel_spectrogram
|
|
|
- n_fft: 1024
|
|
|
- num_mels: 80
|
|
|
- sampling_rate: !ref <sample_rate>
|
|
|
- hop_size: 256
|
|
|
- win_size: 1024
|
|
|
- fmin: 0
|
|
|
- fmax: 8000
|
|
|
- center: False
|
|
|
-compute_fbank: !name:cosyvoice.dataset.processor.compute_fbank
|
|
|
- feat_extractor: !ref <feat_extractor>
|
|
|
-compute_f0: !name:cosyvoice.dataset.processor.compute_f0
|
|
|
- sample_rate: !ref <sample_rate>
|
|
|
- hop_size: 256
|
|
|
-parse_embedding: !name:cosyvoice.dataset.processor.parse_embedding
|
|
|
- normalize: True
|
|
|
-shuffle: !name:cosyvoice.dataset.processor.shuffle
|
|
|
- shuffle_size: 1000
|
|
|
-sort: !name:cosyvoice.dataset.processor.sort
|
|
|
- sort_size: 500 # sort_size should be less than shuffle_size
|
|
|
-batch: !name:cosyvoice.dataset.processor.batch
|
|
|
- batch_type: 'dynamic'
|
|
|
- max_frames_in_batch: 12000
|
|
|
-padding: !name:cosyvoice.dataset.processor.padding
|
|
|
- use_spk_embedding: False # change to True during sft
|
|
|
-
|
|
|
-# dataset processor pipeline
|
|
|
-data_pipeline: [
|
|
|
- !ref <parquet_opener>,
|
|
|
- !ref <tokenize>,
|
|
|
- !ref <filter>,
|
|
|
- !ref <resample>,
|
|
|
- !ref <compute_fbank>,
|
|
|
- !ref <parse_embedding>,
|
|
|
- !ref <shuffle>,
|
|
|
- !ref <sort>,
|
|
|
- !ref <batch>,
|
|
|
- !ref <padding>,
|
|
|
-]
|
|
|
-data_pipeline_gan: [
|
|
|
- !ref <parquet_opener>,
|
|
|
- !ref <tokenize>,
|
|
|
- !ref <filter>,
|
|
|
- !ref <resample>,
|
|
|
- !ref <truncate>,
|
|
|
- !ref <compute_fbank>,
|
|
|
- !ref <compute_f0>,
|
|
|
- !ref <parse_embedding>,
|
|
|
- !ref <shuffle>,
|
|
|
- !ref <sort>,
|
|
|
- !ref <batch>,
|
|
|
- !ref <padding>,
|
|
|
-]
|
|
|
-
|
|
|
-# llm flow train conf
|
|
|
-train_conf:
|
|
|
- optim: adam
|
|
|
- optim_conf:
|
|
|
- lr: 0.002 # change to 0.001 if you want to train flow from scratch
|
|
|
- scheduler: warmuplr
|
|
|
- scheduler_conf:
|
|
|
- warmup_steps: 25000
|
|
|
- max_epoch: 200
|
|
|
- grad_clip: 5
|
|
|
- accum_grad: 2
|
|
|
- log_interval: 100
|
|
|
- save_per_step: -1
|
|
|
-
|
|
|
-# gan train conf
|
|
|
-train_conf_gan:
|
|
|
- optim: adam
|
|
|
- optim_conf:
|
|
|
- lr: 0.0002 # use small lr for gan training
|
|
|
- scheduler: constantlr
|
|
|
- optim_d: adam
|
|
|
- optim_conf_d:
|
|
|
- lr: 0.0002 # use small lr for gan training
|
|
|
- scheduler_d: constantlr
|
|
|
- max_epoch: 200
|
|
|
- grad_clip: 5
|
|
|
- accum_grad: 1 # in gan training, accum_grad must be 1
|
|
|
- log_interval: 100
|
|
|
- save_per_step: -1
|