Selaa lähdekoodia

Merge pull request #1140 from FunAudioLLM/dev/lyuxiang.lx

Dev/lyuxiang.lx
Xiang Lyu 10 kuukautta sitten
vanhempi
commit
b56dfa223d

+ 1 - 1
README.md

@@ -128,7 +128,7 @@ import torchaudio
 
 **CosyVoice2 Usage**
 ```python
-cosyvoice = CosyVoice2('pretrained_models/CosyVoice2-0.5B', load_jit=False, load_trt=False, fp16=False)
+cosyvoice = CosyVoice2('pretrained_models/CosyVoice2-0.5B', load_jit=False, load_trt=False, fp16=False, use_flow_cache=False)
 
 # NOTE if you want to reproduce the results on https://funaudiollm.github.io/cosyvoice2, please add text_frontend=False during inference
 # zero_shot usage

+ 5 - 4
cosyvoice/bin/average_model.py

@@ -75,10 +75,11 @@ def main():
         print('Processing {}'.format(path))
         states = torch.load(path, map_location=torch.device('cpu'))
         for k in states.keys():
-            if k not in avg.keys():
-                avg[k] = states[k].clone()
-            else:
-                avg[k] += states[k]
+            if k not in ['step', 'epoch']:
+                if k not in avg.keys():
+                    avg[k] = states[k].clone()
+                else:
+                    avg[k] += states[k]
     # average
     for k in avg.keys():
         if avg[k] is not None:

+ 20 - 7
cosyvoice/bin/export_jit.py

@@ -24,6 +24,7 @@ ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
 sys.path.append('{}/../..'.format(ROOT_DIR))
 sys.path.append('{}/../../third_party/Matcha-TTS'.format(ROOT_DIR))
 from cosyvoice.cli.cosyvoice import CosyVoice, CosyVoice2
+from cosyvoice.utils.file_utils import logging
 
 
 def get_args():
@@ -60,7 +61,8 @@ def main():
         model = CosyVoice(args.model_dir)
     except Exception:
         try:
-            model = CosyVoice2(args.model_dir)
+            # NOTE set use_flow_cache=True when export jit for cache inference
+            model = CosyVoice2(args.model_dir, use_flow_cache=True)
         except Exception:
             raise TypeError('no valid model_type!')
 
@@ -71,6 +73,7 @@ def main():
         script.save('{}/llm.text_encoder.fp32.zip'.format(args.model_dir))
         script = get_optimized_script(llm_text_encoder.half())
         script.save('{}/llm.text_encoder.fp16.zip'.format(args.model_dir))
+        logging.info('successfully export llm_text_encoder')
 
         # 2. export llm llm
         llm_llm = model.model.llm.llm
@@ -78,13 +81,23 @@ def main():
         script.save('{}/llm.llm.fp32.zip'.format(args.model_dir))
         script = get_optimized_script(llm_llm.half(), ['forward_chunk'])
         script.save('{}/llm.llm.fp16.zip'.format(args.model_dir))
+        logging.info('successfully export llm_llm')
 
-    # 3. export flow encoder
-    flow_encoder = model.model.flow.encoder
-    script = get_optimized_script(flow_encoder)
-    script.save('{}/flow.encoder.fp32.zip'.format(args.model_dir))
-    script = get_optimized_script(flow_encoder.half())
-    script.save('{}/flow.encoder.fp16.zip'.format(args.model_dir))
+        # 3. export flow encoder
+        flow_encoder = model.model.flow.encoder
+        script = get_optimized_script(flow_encoder)
+        script.save('{}/flow.encoder.fp32.zip'.format(args.model_dir))
+        script = get_optimized_script(flow_encoder.half())
+        script.save('{}/flow.encoder.fp16.zip'.format(args.model_dir))
+        logging.info('successfully export flow_encoder')
+    else:
+        # 3. export flow encoder
+        flow_encoder = model.model.flow.encoder
+        script = get_optimized_script(flow_encoder, ['forward_chunk'])
+        script.save('{}/flow.encoder.fp32.zip'.format(args.model_dir))
+        script = get_optimized_script(flow_encoder.half(), ['forward_chunk'])
+        script.save('{}/flow.encoder.fp16.zip'.format(args.model_dir))
+        logging.info('successfully export flow_encoder')
 
 
 if __name__ == '__main__':

+ 125 - 47
cosyvoice/bin/export_onnx.py

@@ -28,6 +28,7 @@ ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
 sys.path.append('{}/../..'.format(ROOT_DIR))
 sys.path.append('{}/../../third_party/Matcha-TTS'.format(ROOT_DIR))
 from cosyvoice.cli.cosyvoice import CosyVoice, CosyVoice2
+from cosyvoice.utils.file_utils import logging
 
 
 def get_dummy_input(batch_size, seq_len, out_channels, device):
@@ -51,6 +52,7 @@ def get_args():
     return args
 
 
+@torch.no_grad()
 def main():
     args = get_args()
     logging.basicConfig(level=logging.DEBUG,
@@ -60,56 +62,132 @@ def main():
         model = CosyVoice(args.model_dir)
     except Exception:
         try:
-            model = CosyVoice2(args.model_dir)
+            # NOTE set use_flow_cache=True when export jit for cache inference
+            model = CosyVoice2(args.model_dir, use_flow_cache=True)
         except Exception:
             raise TypeError('no valid model_type!')
 
-    # 1. export flow decoder estimator
-    estimator = model.model.flow.decoder.estimator
-
-    device = model.model.device
-    batch_size, seq_len = 2, 256
-    out_channels = model.model.flow.decoder.estimator.out_channels
-    x, mask, mu, t, spks, cond = get_dummy_input(batch_size, seq_len, out_channels, device)
-    torch.onnx.export(
-        estimator,
-        (x, mask, mu, t, spks, cond),
-        '{}/flow.decoder.estimator.fp32.onnx'.format(args.model_dir),
-        export_params=True,
-        opset_version=18,
-        do_constant_folding=True,
-        input_names=['x', 'mask', 'mu', 't', 'spks', 'cond'],
-        output_names=['estimator_out'],
-        dynamic_axes={
-            'x': {2: 'seq_len'},
-            'mask': {2: 'seq_len'},
-            'mu': {2: 'seq_len'},
-            'cond': {2: 'seq_len'},
-            'estimator_out': {2: 'seq_len'},
-        }
-    )
-
-    # 2. test computation consistency
-    option = onnxruntime.SessionOptions()
-    option.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL
-    option.intra_op_num_threads = 1
-    providers = ['CUDAExecutionProvider' if torch.cuda.is_available() else 'CPUExecutionProvider']
-    estimator_onnx = onnxruntime.InferenceSession('{}/flow.decoder.estimator.fp32.onnx'.format(args.model_dir),
-                                                  sess_options=option, providers=providers)
-
-    for _ in tqdm(range(10)):
-        x, mask, mu, t, spks, cond = get_dummy_input(batch_size, random.randint(16, 512), out_channels, device)
-        output_pytorch = estimator(x, mask, mu, t, spks, cond)
-        ort_inputs = {
-            'x': x.cpu().numpy(),
-            'mask': mask.cpu().numpy(),
-            'mu': mu.cpu().numpy(),
-            't': t.cpu().numpy(),
-            'spks': spks.cpu().numpy(),
-            'cond': cond.cpu().numpy()
-        }
-        output_onnx = estimator_onnx.run(None, ort_inputs)[0]
-        torch.testing.assert_allclose(output_pytorch, torch.from_numpy(output_onnx).to(device), rtol=1e-2, atol=1e-4)
+    if not isinstance(model, CosyVoice2):
+        # 1. export flow decoder estimator
+        estimator = model.model.flow.decoder.estimator
+        estimator.eval()
+
+        device = model.model.device
+        batch_size, seq_len = 2, 256
+        out_channels = model.model.flow.decoder.estimator.out_channels
+        x, mask, mu, t, spks, cond = get_dummy_input(batch_size, seq_len, out_channels, device)
+        torch.onnx.export(
+            estimator,
+            (x, mask, mu, t, spks, cond),
+            '{}/flow.decoder.estimator.fp32.onnx'.format(args.model_dir),
+            export_params=True,
+            opset_version=18,
+            do_constant_folding=True,
+            input_names=['x', 'mask', 'mu', 't', 'spks', 'cond'],
+            output_names=['estimator_out'],
+            dynamic_axes={
+                'x': {2: 'seq_len'},
+                'mask': {2: 'seq_len'},
+                'mu': {2: 'seq_len'},
+                'cond': {2: 'seq_len'},
+                'estimator_out': {2: 'seq_len'},
+            }
+        )
+
+        # 2. test computation consistency
+        option = onnxruntime.SessionOptions()
+        option.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL
+        option.intra_op_num_threads = 1
+        providers = ['CUDAExecutionProvider' if torch.cuda.is_available() else 'CPUExecutionProvider']
+        estimator_onnx = onnxruntime.InferenceSession('{}/flow.decoder.estimator.fp32.onnx'.format(args.model_dir),
+                                                      sess_options=option, providers=providers)
+
+        for _ in tqdm(range(10)):
+            x, mask, mu, t, spks, cond = get_dummy_input(batch_size, random.randint(16, 512), out_channels, device)
+            output_pytorch = estimator(x, mask, mu, t, spks, cond)
+            ort_inputs = {
+                'x': x.cpu().numpy(),
+                'mask': mask.cpu().numpy(),
+                'mu': mu.cpu().numpy(),
+                't': t.cpu().numpy(),
+                'spks': spks.cpu().numpy(),
+                'cond': cond.cpu().numpy()
+            }
+            output_onnx = estimator_onnx.run(None, ort_inputs)[0]
+            torch.testing.assert_allclose(output_pytorch, torch.from_numpy(output_onnx).to(device), rtol=1e-2, atol=1e-4)
+        logging.info('successfully export estimator')
+    else:
+        # 1. export flow decoder estimator
+        estimator = model.model.flow.decoder.estimator
+        estimator.forward = estimator.forward_chunk
+        estimator.eval()
+
+        device = model.model.device
+        batch_size, seq_len = 2, 256
+        out_channels = model.model.flow.decoder.estimator.out_channels
+        x, mask, mu, t, spks, cond = get_dummy_input(batch_size, seq_len, out_channels, device)
+        cache = model.model.init_flow_cache()['decoder_cache']
+        cache.pop('offset')
+        cache = {k: v[0] for k, v in cache.items()}
+        torch.onnx.export(
+            estimator,
+            (x, mask, mu, t, spks, cond,
+             cache['down_blocks_conv_cache'],
+             cache['down_blocks_kv_cache'],
+             cache['mid_blocks_conv_cache'],
+             cache['mid_blocks_kv_cache'],
+             cache['up_blocks_conv_cache'],
+             cache['up_blocks_kv_cache'],
+             cache['final_blocks_conv_cache']),
+            '{}/flow.decoder.estimator.fp32.onnx'.format(args.model_dir),
+            export_params=True,
+            opset_version=18,
+            do_constant_folding=True,
+            input_names=['x', 'mask', 'mu', 't', 'spks', 'cond', 'down_blocks_conv_cache', 'down_blocks_kv_cache', 'mid_blocks_conv_cache', 'mid_blocks_kv_cache',
+                         'up_blocks_conv_cache', 'up_blocks_kv_cache', 'final_blocks_conv_cache'],
+            output_names=['estimator_out', 'down_blocks_conv_cache_out', 'down_blocks_kv_cache_out', 'mid_blocks_conv_cache_out', 'mid_blocks_kv_cache_out',
+                          'up_blocks_conv_cache_out', 'up_blocks_kv_cache_out', 'final_blocks_conv_cache_out'],
+            dynamic_axes={
+                'x': {2: 'seq_len'},
+                'mask': {2: 'seq_len'},
+                'mu': {2: 'seq_len'},
+                'cond': {2: 'seq_len'},
+                'down_blocks_kv_cache': {3: 'cache_in_len'},
+                'mid_blocks_kv_cache': {3: 'cache_in_len'},
+                'up_blocks_kv_cache': {3: 'cache_in_len'},
+                'estimator_out': {2: 'seq_len'},
+                'down_blocks_kv_cache_out': {3: 'cache_out_len'},
+                'mid_blocks_kv_cache_out': {3: 'cache_out_len'},
+                'up_blocks_kv_cache_out': {3: 'cache_out_len'},
+            }
+        )
+
+        # 2. test computation consistency
+        option = onnxruntime.SessionOptions()
+        option.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL
+        option.intra_op_num_threads = 1
+        providers = ['CUDAExecutionProvider' if torch.cuda.is_available() else 'CPUExecutionProvider']
+        estimator_onnx = onnxruntime.InferenceSession('{}/flow.decoder.estimator.fp32.onnx'.format(args.model_dir),
+                                                      sess_options=option, providers=providers)
+
+        for _ in tqdm(range(10)):
+            x, mask, mu, t, spks, cond = get_dummy_input(batch_size, random.randint(16, 512), out_channels, device)
+            cache = model.model.init_flow_cache()['decoder_cache']
+            cache.pop('offset')
+            cache = {k: v[0] for k, v in cache.items()}
+            output_pytorch = estimator(x, mask, mu, t, spks, cond, **{k: v.clone() for k, v in cache.items()})
+            ort_inputs = {
+                'x': x.cpu().numpy(),
+                'mask': mask.cpu().numpy(),
+                'mu': mu.cpu().numpy(),
+                't': t.cpu().numpy(),
+                'spks': spks.cpu().numpy(),
+                'cond': cond.cpu().numpy(),
+            }
+            output_onnx = estimator_onnx.run(None, {**ort_inputs, **{k: v.clone().cpu().numpy() for k, v in cache.items()}})
+            for i, j in zip(output_pytorch, output_onnx):
+                torch.testing.assert_allclose(i, torch.from_numpy(j).to(device), rtol=1e-2, atol=1e-4)
+        logging.info('successfully export estimator')
 
 
 if __name__ == "__main__":

+ 0 - 10
cosyvoice/bin/export_trt.sh

@@ -1,10 +0,0 @@
-#!/bin/bash
-# Copyright 2024 Alibaba Inc. All Rights Reserved.
-# download tensorrt from https://developer.nvidia.com/tensorrt/download/10x, check your system and cuda for compatibability
-# for example for linux + cuda12.4, you can download https://developer.nvidia.com/downloads/compute/machine-learning/tensorrt/10.0.1/tars/TensorRT-10.0.1.6.Linux.x86_64-gnu.cuda-12.4.tar.gz
-TRT_DIR=<YOUR_TRT_DIR>
-MODEL_DIR=<COSYVOICE2_MODEL_DIR>
-
-export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$TRT_DIR/lib:/usr/local/cuda/lib64
-$TRT_DIR/bin/trtexec --onnx=$MODEL_DIR/flow.decoder.estimator.fp32.onnx --saveEngine=$MODEL_DIR/flow.decoder.estimator.fp32.mygpu.plan --minShapes=x:2x80x4,mask:2x1x4,mu:2x80x4,cond:2x80x4 --optShapes=x:2x80x193,mask:2x1x193,mu:2x80x193,cond:2x80x193 --maxShapes=x:2x80x6800,mask:2x1x6800,mu:2x80x6800,cond:2x80x6800 --inputIOFormats=fp32:chw,fp32:chw,fp32:chw,fp32:chw,fp32:chw,fp32:chw --outputIOFormats=fp32:chw
-$TRT_DIR/bin/trtexec --onnx=$MODEL_DIR/flow.decoder.estimator.fp32.onnx --saveEngine=$MODEL_DIR/flow.decoder.estimator.fp16.mygpu.plan --fp16 --minShapes=x:2x80x4,mask:2x1x4,mu:2x80x4,cond:2x80x4 --optShapes=x:2x80x193,mask:2x1x193,mu:2x80x193,cond:2x80x193 --maxShapes=x:2x80x6800,mask:2x1x6800,mu:2x80x6800,cond:2x80x6800 --inputIOFormats=fp16:chw,fp16:chw,fp16:chw,fp16:chw,fp16:chw,fp16:chw --outputIOFormats=fp16:chw

+ 15 - 5
cosyvoice/bin/inference.py

@@ -23,7 +23,7 @@ from torch.utils.data import DataLoader
 import torchaudio
 from hyperpyyaml import load_hyperpyyaml
 from tqdm import tqdm
-from cosyvoice.cli.model import CosyVoiceModel
+from cosyvoice.cli.model import CosyVoiceModel, CosyVoice2Model
 from cosyvoice.dataset.dataset import Dataset
 
 
@@ -33,6 +33,7 @@ def get_args():
     parser.add_argument('--prompt_data', required=True, help='prompt data file')
     parser.add_argument('--prompt_utt2data', required=True, help='prompt data file')
     parser.add_argument('--tts_text', required=True, help='tts input file')
+    parser.add_argument('--qwen_pretrain_path', required=False, help='qwen pretrain path')
     parser.add_argument('--llm_model', required=True, help='llm model file')
     parser.add_argument('--flow_model', required=True, help='flow model file')
     parser.add_argument('--hifigan_model', required=True, help='hifigan model file')
@@ -59,16 +60,25 @@ def main():
     # Init cosyvoice models from configs
     use_cuda = args.gpu >= 0 and torch.cuda.is_available()
     device = torch.device('cuda' if use_cuda else 'cpu')
-    with open(args.config, 'r') as f:
-        configs = load_hyperpyyaml(f)
+    try:
+        with open(args.config, 'r') as f:
+            configs = load_hyperpyyaml(f, overrides={'qwen_pretrain_path': args.qwen_pretrain_path})
+        model = CosyVoice2Model(configs['llm'], configs['flow'], configs['hift'], fp16=False)
+    except Exception:
+        try:
+            with open(args.config, 'r') as f:
+                configs = load_hyperpyyaml(f)
+            model = CosyVoiceModel(configs['llm'], configs['flow'], configs['hift'], fp16=False)
+        except Exception:
+            raise TypeError('no valid model_type!')
 
-    model = CosyVoiceModel(configs['llm'], configs['flow'], configs['hift'])
     model.load(args.llm_model, args.flow_model, args.hifigan_model)
 
     test_dataset = Dataset(args.prompt_data, data_pipeline=configs['data_pipeline'], mode='inference', shuffle=False, partition=False,
                            tts_file=args.tts_text, prompt_utt2data=args.prompt_utt2data)
     test_data_loader = DataLoader(test_dataset, batch_size=None, num_workers=0)
 
+    sample_rate = configs['sample_rate']
     del configs
     os.makedirs(args.result_dir, exist_ok=True)
     fn = os.path.join(args.result_dir, 'wav.scp')
@@ -104,7 +114,7 @@ def main():
             tts_speeches = torch.concat(tts_speeches, dim=1)
             tts_key = '{}_{}'.format(utts[0], tts_index[0])
             tts_fn = os.path.join(args.result_dir, '{}.wav'.format(tts_key))
-            torchaudio.save(tts_fn, tts_speeches, sample_rate=22050)
+            torchaudio.save(tts_fn, tts_speeches, sample_rate=sample_rate, backend='soundfile')
             f.write('{} {}\n'.format(tts_key, tts_fn))
             f.flush()
     f.close()

+ 7 - 2
cosyvoice/bin/train.py

@@ -46,6 +46,7 @@ def get_args():
     parser.add_argument('--config', required=True, help='config file')
     parser.add_argument('--train_data', required=True, help='train data file')
     parser.add_argument('--cv_data', required=True, help='cv data file')
+    parser.add_argument('--qwen_pretrain_path', required=False, help='qwen pretrain path')
     parser.add_argument('--checkpoint', help='checkpoint model')
     parser.add_argument('--model_dir', required=True, help='save model dir')
     parser.add_argument('--tensorboard_dir',
@@ -97,8 +98,12 @@ def main():
     override_dict = {k: None for k in ['llm', 'flow', 'hift', 'hifigan'] if k != args.model}
     if gan is True:
         override_dict.pop('hift')
-    with open(args.config, 'r') as f:
-        configs = load_hyperpyyaml(f, overrides=override_dict)
+    try:
+        with open(args.config, 'r') as f:
+            configs = load_hyperpyyaml(f, overrides={**override_dict, 'qwen_pretrain_path': args.qwen_pretrain_path})
+    except Exception:
+        with open(args.config, 'r') as f:
+            configs = load_hyperpyyaml(f, overrides=override_dict)
     if gan is True:
         configs['train_conf'] = configs['train_conf_gan']
     configs['train_conf'].update(vars(args))

+ 11 - 5
cosyvoice/cli/cosyvoice.py

@@ -32,7 +32,10 @@ class CosyVoice:
         self.fp16 = fp16
         if not os.path.exists(model_dir):
             model_dir = snapshot_download(model_dir)
-        with open('{}/cosyvoice.yaml'.format(model_dir), 'r') as f:
+        hyper_yaml_path = '{}/cosyvoice.yaml'.format(model_dir)
+        if not os.path.exists(hyper_yaml_path):
+            raise ValueError('{} not found!'.format(hyper_yaml_path))
+        with open(hyper_yaml_path, 'r') as f:
             configs = load_hyperpyyaml(f)
         assert get_model_type(configs) != CosyVoice2Model, 'do not use {} for CosyVoice initialization!'.format(model_dir)
         self.frontend = CosyVoiceFrontEnd(configs['get_tokenizer'],
@@ -126,13 +129,16 @@ class CosyVoice:
 
 class CosyVoice2(CosyVoice):
 
-    def __init__(self, model_dir, load_jit=False, load_trt=False, fp16=False):
+    def __init__(self, model_dir, load_jit=False, load_trt=False, fp16=False, use_flow_cache=False):
         self.instruct = True if '-Instruct' in model_dir else False
         self.model_dir = model_dir
         self.fp16 = fp16
         if not os.path.exists(model_dir):
             model_dir = snapshot_download(model_dir)
-        with open('{}/cosyvoice.yaml'.format(model_dir), 'r') as f:
+        hyper_yaml_path = '{}/cosyvoice2.yaml'.format(model_dir)
+        if not os.path.exists(hyper_yaml_path):
+            raise ValueError('{} not found!'.format(hyper_yaml_path))
+        with open(hyper_yaml_path, 'r') as f:
             configs = load_hyperpyyaml(f, overrides={'qwen_pretrain_path': os.path.join(model_dir, 'CosyVoice-BlankEN')})
         assert get_model_type(configs) == CosyVoice2Model, 'do not use {} for CosyVoice2 initialization!'.format(model_dir)
         self.frontend = CosyVoiceFrontEnd(configs['get_tokenizer'],
@@ -145,9 +151,9 @@ class CosyVoice2(CosyVoice):
         if torch.cuda.is_available() is False and (load_jit is True or load_trt is True or fp16 is True):
             load_jit, load_trt, fp16 = False, False, False
             logging.warning('no cuda device, set load_jit/load_trt/fp16 to False')
-        self.model = CosyVoice2Model(configs['llm'], configs['flow'], configs['hift'], fp16)
+        self.model = CosyVoice2Model(configs['llm'], configs['flow'], configs['hift'], fp16, use_flow_cache)
         self.model.load('{}/llm.pt'.format(model_dir),
-                        '{}/flow.pt'.format(model_dir),
+                        '{}/flow.pt'.format(model_dir) if use_flow_cache is False else '{}/flow.cache.pt'.format(model_dir),
                         '{}/hift.pt'.format(model_dir))
         if load_jit:
             self.model.load_jit('{}/flow.encoder.{}.zip'.format(model_dir, 'fp16' if self.fp16 is True else 'fp32'))

+ 92 - 43
cosyvoice/cli/model.py

@@ -36,16 +36,12 @@ class CosyVoiceModel:
         self.flow = flow
         self.hift = hift
         self.fp16 = fp16
-        self.llm.fp16 = fp16
-        self.flow.fp16 = fp16
         if self.fp16 is True:
             self.llm.half()
             self.flow.half()
         self.token_min_hop_len = 2 * self.flow.input_frame_rate
         self.token_max_hop_len = 4 * self.flow.input_frame_rate
         self.token_overlap_len = 20
-        # here we fix set flow.decoder.estimator.static_chunk_size = 0 for compatibability
-        self.flow.decoder.estimator.static_chunk_size = 0
         # mel fade in out
         self.mel_overlap_len = int(self.token_overlap_len / self.flow.input_frame_rate * 22050 / 256)
         self.mel_window = np.hamming(2 * self.mel_overlap_len)
@@ -87,19 +83,25 @@ class CosyVoiceModel:
     def load_trt(self, flow_decoder_estimator_model, flow_decoder_onnx_model, fp16):
         assert torch.cuda.is_available(), 'tensorrt only supports gpu!'
         if not os.path.exists(flow_decoder_estimator_model):
-            convert_onnx_to_trt(flow_decoder_estimator_model, flow_decoder_onnx_model, fp16)
+            convert_onnx_to_trt(flow_decoder_estimator_model, self.get_trt_kwargs(), flow_decoder_onnx_model, fp16)
         if os.path.getsize(flow_decoder_estimator_model) == 0:
             raise ValueError('{} is empty file, delete it and export again!'.format(flow_decoder_estimator_model))
         del self.flow.decoder.estimator
         import tensorrt as trt
         with open(flow_decoder_estimator_model, 'rb') as f:
             self.flow.decoder.estimator_engine = trt.Runtime(trt.Logger(trt.Logger.INFO)).deserialize_cuda_engine(f.read())
-        if self.flow.decoder.estimator_engine is None:
-            raise ValueError('failed to load trt {}'.format(flow_decoder_estimator_model))
+        assert self.flow.decoder.estimator_engine is not None, 'failed to load trt {}'.format(flow_decoder_estimator_model)
         self.flow.decoder.estimator = self.flow.decoder.estimator_engine.create_execution_context()
 
+    def get_trt_kwargs(self):
+        min_shape = [(2, 80, 4), (2, 1, 4), (2, 80, 4), (2, 80, 4)]
+        opt_shape = [(2, 80, 200), (2, 1, 200), (2, 80, 200), (2, 80, 200)]
+        max_shape = [(2, 80, 3000), (2, 1, 3000), (2, 80, 3000), (2, 80, 3000)]
+        input_names = ["x", "mask", "mu", "cond"]
+        return {'min_shape': min_shape, 'opt_shape': opt_shape, 'max_shape': max_shape, 'input_names': input_names}
+
     def llm_job(self, text, prompt_text, llm_prompt_speech_token, llm_embedding, uuid):
-        with self.llm_context:
+        with self.llm_context, torch.cuda.amp.autocast(self.fp16):
             if isinstance(text, Generator):
                 assert isinstance(self, CosyVoice2Model), 'streaming input text is only implemented for CosyVoice2!'
                 for i in self.llm.inference_bistream(text=text,
@@ -121,15 +123,15 @@ class CosyVoiceModel:
         self.llm_end_dict[uuid] = True
 
     def token2wav(self, token, prompt_token, prompt_feat, embedding, uuid, finalize=False, speed=1.0):
-        tts_mel, flow_cache = self.flow.inference(token=token.to(self.device),
-                                                  token_len=torch.tensor([token.shape[1]], dtype=torch.int32).to(self.device),
-                                                  prompt_token=prompt_token.to(self.device),
-                                                  prompt_token_len=torch.tensor([prompt_token.shape[1]], dtype=torch.int32).to(self.device),
-                                                  prompt_feat=prompt_feat.to(self.device),
-                                                  prompt_feat_len=torch.tensor([prompt_feat.shape[1]], dtype=torch.int32).to(self.device),
-                                                  embedding=embedding.to(self.device),
-                                                  flow_cache=self.flow_cache_dict[uuid])
-        self.flow_cache_dict[uuid] = flow_cache
+        with torch.cuda.amp.autocast(self.fp16):
+            tts_mel, self.flow_cache_dict[uuid] = self.flow.inference(token=token.to(self.device),
+                                                                      token_len=torch.tensor([token.shape[1]], dtype=torch.int32).to(self.device),
+                                                                      prompt_token=prompt_token.to(self.device),
+                                                                      prompt_token_len=torch.tensor([prompt_token.shape[1]], dtype=torch.int32).to(self.device),
+                                                                      prompt_feat=prompt_feat.to(self.device),
+                                                                      prompt_feat_len=torch.tensor([prompt_feat.shape[1]], dtype=torch.int32).to(self.device),
+                                                                      embedding=embedding.to(self.device),
+                                                                      flow_cache=self.flow_cache_dict[uuid])
 
         # mel overlap fade in out
         if self.mel_overlap_dict[uuid].shape[2] != 0:
@@ -276,6 +278,7 @@ class CosyVoiceModel:
             self.llm_end_dict.pop(this_uuid)
             self.mel_overlap_dict.pop(this_uuid)
             self.hift_cache_dict.pop(this_uuid)
+            self.flow_cache_dict.pop(this_uuid)
         torch.cuda.empty_cache()
 
 
@@ -285,49 +288,88 @@ class CosyVoice2Model(CosyVoiceModel):
                  llm: torch.nn.Module,
                  flow: torch.nn.Module,
                  hift: torch.nn.Module,
-                 fp16: bool):
+                 fp16: bool,
+                 use_flow_cache: bool):
         self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
         self.llm = llm
         self.flow = flow
         self.hift = hift
         self.fp16 = fp16
-        self.llm.fp16 = fp16
-        self.flow.fp16 = fp16
+        self.use_flow_cache = use_flow_cache
         if self.fp16 is True:
             self.llm.half()
             self.flow.half()
-        self.token_hop_len = 2 * self.flow.input_frame_rate
-        # here we fix flow encoder/decoder decoding_chunk_size, in the future we will send it as arguments, or use cache
-        self.flow.encoder.static_chunk_size = 2 * self.flow.input_frame_rate
-        self.flow.decoder.estimator.static_chunk_size = 2 * self.flow.input_frame_rate * self.flow.token_mel_ratio
+        # stream related params, check examples/libritts/cosyvoice2/conf/cosyvoice2.yaml
+        self.token_hop_len = 25
+        self.flow_decoder_required_cache_size = -1 if use_flow_cache is False else 1 * self.token_hop_len
         # hift cache
         self.mel_cache_len = 8
         self.source_cache_len = int(self.mel_cache_len * 480)
         # speech fade in out
         self.speech_window = np.hamming(2 * self.source_cache_len)
         # rtf and decoding related
-        self.stream_scale_factor = 1
         self.llm_context = torch.cuda.stream(torch.cuda.Stream(self.device)) if torch.cuda.is_available() else nullcontext()
         self.lock = threading.Lock()
         # dict used to store session related variable
         self.tts_speech_token_dict = {}
         self.llm_end_dict = {}
+        self.flow_cache_dict = {}
         self.hift_cache_dict = {}
 
+    def init_flow_cache(self):
+        encoder_cache = {'offset': 0,
+                         'pre_lookahead_layer_conv2_cache': torch.zeros(1, 512, 2).to(self.device),
+                         'encoders_kv_cache': torch.zeros(6, 1, 8, 0, 64 * 2).to(self.device),
+                         'upsample_offset': 0,
+                         'upsample_conv_cache': torch.zeros(1, 512, 4).to(self.device),
+                         'upsample_kv_cache': torch.zeros(4, 1, 8, 0, 64 * 2).to(self.device)}
+        decoder_cache = {'offset': 0,
+                         'down_blocks_conv_cache': torch.zeros(10, 1, 2, 832, 2).to(self.device),
+                         'down_blocks_kv_cache': torch.zeros(10, 1, 4, 2, 0, 512, 2).to(self.device),
+                         'mid_blocks_conv_cache': torch.zeros(10, 12, 2, 512, 2).to(self.device),
+                         'mid_blocks_kv_cache': torch.zeros(10, 12, 4, 2, 0, 512, 2).to(self.device),
+                         'up_blocks_conv_cache': torch.zeros(10, 1, 2, 1024, 2).to(self.device),
+                         'up_blocks_kv_cache': torch.zeros(10, 1, 4, 2, 0, 512, 2).to(self.device),
+                         'final_blocks_conv_cache': torch.zeros(10, 2, 256, 2).to(self.device)}
+        if self.fp16 is True:
+            for cache in [encoder_cache, decoder_cache]:
+                for k, v in cache.items():
+                    if isinstance(v, torch.Tensor):
+                        cache[k] = v.half()
+        cache = {'encoder_cache': encoder_cache, 'decoder_cache': decoder_cache}
+        return cache
+
+    def trim_flow_cache(self, cache):
+        if self.flow_decoder_required_cache_size > 0:
+            cache['decoder_cache']['down_blocks_kv_cache'] = cache['decoder_cache']['down_blocks_kv_cache'][:, :, :, :, -self.flow_decoder_required_cache_size:]
+            cache['decoder_cache']['mid_blocks_kv_cache'] = cache['decoder_cache']['mid_blocks_kv_cache'][:, :, :, :, -self.flow_decoder_required_cache_size:]
+            cache['decoder_cache']['up_blocks_kv_cache'] = cache['decoder_cache']['up_blocks_kv_cache'][:, :, :, :, -self.flow_decoder_required_cache_size:]
+        return cache
+
     def load_jit(self, flow_encoder_model):
         flow_encoder = torch.jit.load(flow_encoder_model, map_location=self.device)
         self.flow.encoder = flow_encoder
 
-    def token2wav(self, token, prompt_token, prompt_feat, embedding, uuid, token_offset, finalize=False, speed=1.0):
-        tts_mel, _ = self.flow.inference(token=token.to(self.device),
-                                         token_len=torch.tensor([token.shape[1]], dtype=torch.int32).to(self.device),
-                                         prompt_token=prompt_token.to(self.device),
-                                         prompt_token_len=torch.tensor([prompt_token.shape[1]], dtype=torch.int32).to(self.device),
-                                         prompt_feat=prompt_feat.to(self.device),
-                                         prompt_feat_len=torch.tensor([prompt_feat.shape[1]], dtype=torch.int32).to(self.device),
-                                         embedding=embedding.to(self.device),
-                                         finalize=finalize)
-        tts_mel = tts_mel[:, :, token_offset * self.flow.token_mel_ratio:]
+    def get_trt_kwargs(self):
+        min_shape = [(2, 80, 4), (2, 1, 4), (2, 80, 4), (2, 80, 4), (1, 4, 2, 0, 512, 2), (12, 4, 2, 0, 512, 2), (1, 4, 2, 0, 512, 2)]
+        opt_shape = [(2, 80, 200), (2, 1, 200), (2, 80, 200), (2, 80, 200), (1, 4, 2, 100, 512, 2), (12, 4, 2, 100, 512, 2), (1, 4, 2, 100, 512, 2)]
+        max_shape = [(2, 80, 1500), (2, 1, 1500), (2, 80, 1500), (2, 80, 1500), (1, 4, 2, 200, 512, 2), (12, 4, 2, 200, 512, 2), (1, 4, 2, 200, 512, 2)]
+        input_names = ["x", "mask", "mu", "cond", 'down_blocks_kv_cache', 'mid_blocks_kv_cache', 'up_blocks_kv_cache']
+        assert self.use_flow_cache is True, "get_trt_kwargs is set for flow cache mode. If you want to use trt with use_flow_cache=False, please set higher max_shape"
+        return {'min_shape': min_shape, 'opt_shape': opt_shape, 'max_shape': max_shape, 'input_names': input_names}
+
+    def token2wav(self, token, prompt_token, prompt_feat, embedding, uuid, finalize=False, speed=1.0):
+        with torch.cuda.amp.autocast(self.fp16):
+            tts_mel, self.flow_cache_dict[uuid] = self.flow.inference(token=token.to(self.device),
+                                                                      token_len=torch.tensor([token.shape[1]], dtype=torch.int32).to(self.device),
+                                                                      prompt_token=prompt_token.to(self.device),
+                                                                      prompt_token_len=torch.tensor([prompt_token.shape[1]], dtype=torch.int32).to(self.device),
+                                                                      prompt_feat=prompt_feat.to(self.device),
+                                                                      prompt_feat_len=torch.tensor([prompt_feat.shape[1]], dtype=torch.int32).to(self.device),
+                                                                      embedding=embedding.to(self.device),
+                                                                      cache=self.flow_cache_dict[uuid],
+                                                                      finalize=finalize)
+        self.flow_cache_dict[uuid] = self.trim_flow_cache(self.flow_cache_dict[uuid])
         # append hift cache
         if self.hift_cache_dict[uuid] is not None:
             hift_cache_mel, hift_cache_source = self.hift_cache_dict[uuid]['mel'], self.hift_cache_dict[uuid]['source']
@@ -359,27 +401,34 @@ class CosyVoice2Model(CosyVoiceModel):
             prompt_speech_feat=torch.zeros(1, 0, 80), stream=False, speed=1.0, **kwargs):
         # this_uuid is used to track variables related to this inference thread
         this_uuid = str(uuid.uuid1())
+        # NOTE in cache mode, trim flow_prompt to same size as flow_decoder_required_cache_size
+        if self.use_flow_cache is True:
+            flow_prompt_speech_token = flow_prompt_speech_token[:, -self.flow_decoder_required_cache_size:]
+            prompt_speech_feat = prompt_speech_feat[:, -self.flow_decoder_required_cache_size * 2:]
         with self.lock:
             self.tts_speech_token_dict[this_uuid], self.llm_end_dict[this_uuid] = [], False
             self.hift_cache_dict[this_uuid] = None
+            self.flow_cache_dict[this_uuid] = self.init_flow_cache()
         p = threading.Thread(target=self.llm_job, args=(text, prompt_text, llm_prompt_speech_token, llm_embedding, this_uuid))
         p.start()
         if stream is True:
-            token_offset = 0
             while True:
                 time.sleep(0.1)
-                if len(self.tts_speech_token_dict[this_uuid]) - token_offset >= self.token_hop_len + self.flow.pre_lookahead_len:
-                    this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid][:token_offset + self.token_hop_len + self.flow.pre_lookahead_len]).unsqueeze(dim=0)
+                if len(self.tts_speech_token_dict[this_uuid]) >= self.token_hop_len + self.flow.pre_lookahead_len:
+                    this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid][:self.token_hop_len + self.flow.pre_lookahead_len]).unsqueeze(dim=0)
                     this_tts_speech = self.token2wav(token=this_tts_speech_token,
                                                      prompt_token=flow_prompt_speech_token,
                                                      prompt_feat=prompt_speech_feat,
                                                      embedding=flow_embedding,
                                                      uuid=this_uuid,
-                                                     token_offset=token_offset,
                                                      finalize=False)
-                    token_offset += self.token_hop_len
+                    # NOTE in cache inference mode, we only use flow_prompt_speech_token/prompt_speech_feat in first chunk
+                    flow_prompt_speech_token = torch.zeros(1, 0, dtype=torch.int32).to(self.device)
+                    prompt_speech_feat = torch.zeros(1, 0, 80).to(self.device)
                     yield {'tts_speech': this_tts_speech.cpu()}
-                if self.llm_end_dict[this_uuid] is True and len(self.tts_speech_token_dict[this_uuid]) - token_offset < self.token_hop_len + self.flow.pre_lookahead_len:
+                    with self.lock:
+                        self.tts_speech_token_dict[this_uuid] = self.tts_speech_token_dict[this_uuid][self.token_hop_len:]
+                if self.llm_end_dict[this_uuid] is True and len(self.tts_speech_token_dict[this_uuid]) < self.token_hop_len + self.flow.pre_lookahead_len:
                     break
             p.join()
             # deal with remain tokens, make sure inference remain token len equals token_hop_len when cache_speech is not None
@@ -389,7 +438,6 @@ class CosyVoice2Model(CosyVoiceModel):
                                              prompt_feat=prompt_speech_feat,
                                              embedding=flow_embedding,
                                              uuid=this_uuid,
-                                             token_offset=token_offset,
                                              finalize=True)
             yield {'tts_speech': this_tts_speech.cpu()}
         else:
@@ -401,11 +449,12 @@ class CosyVoice2Model(CosyVoiceModel):
                                              prompt_feat=prompt_speech_feat,
                                              embedding=flow_embedding,
                                              uuid=this_uuid,
-                                             token_offset=0,
                                              finalize=True,
                                              speed=speed)
             yield {'tts_speech': this_tts_speech.cpu()}
         with self.lock:
             self.tts_speech_token_dict.pop(this_uuid)
             self.llm_end_dict.pop(this_uuid)
+            self.hift_cache_dict.pop(this_uuid)
+            self.flow_cache_dict.pop(this_uuid)
         torch.cuda.empty_cache()

+ 2 - 2
cosyvoice/dataset/processor.py

@@ -196,8 +196,8 @@ def compute_f0(data, sample_rate, hop_size, mode='train'):
         assert 'text_token' in sample
         waveform = sample['speech']
         _f0, t = pw.harvest(waveform.squeeze(dim=0).numpy().astype('double'), sample_rate, frame_period=frame_period)
-        if sum(_f0 != 0) < 5: # this happens when the algorithm fails
-            _f0, t = pw.dio(waveform.squeeze(dim=0).numpy().astype('double'), sample_rate, frame_period=frame_period) # if harvest fails, try dio
+        if sum(_f0 != 0) < 5:  # this happens when the algorithm fails
+            _f0, t = pw.dio(waveform.squeeze(dim=0).numpy().astype('double'), sample_rate, frame_period=frame_period)  # if harvest fails, try dio
         f0 = pw.stonemask(waveform.squeeze(dim=0).numpy().astype('double'), _f0, t, sample_rate)
         f0 = F.interpolate(torch.from_numpy(f0).view(1, 1, -1), size=sample['speech_feat'].shape[0], mode='linear').view(-1)
         sample['pitch_feat'] = f0

+ 655 - 54
cosyvoice/flow/decoder.py

@@ -11,14 +11,16 @@
 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 # See the License for the specific language governing permissions and
 # limitations under the License.
+from typing import Tuple, Optional, Dict, Any
 import torch
 import torch.nn as nn
 import torch.nn.functional as F
 from einops import pack, rearrange, repeat
+from diffusers.models.attention_processor import Attention, AttnProcessor2_0, inspect, logger, deprecate
 from cosyvoice.utils.common import mask_to_bias
 from cosyvoice.utils.mask import add_optional_chunk_mask
 from matcha.models.components.decoder import SinusoidalPosEmb, Block1D, ResnetBlock1D, Downsample1D, TimestepEmbedding, Upsample1D
-from matcha.models.components.transformer import BasicTransformerBlock
+from matcha.models.components.transformer import BasicTransformerBlock, maybe_allow_in_graph
 
 
 class Transpose(torch.nn.Module):
@@ -27,34 +29,11 @@ class Transpose(torch.nn.Module):
         self.dim0 = dim0
         self.dim1 = dim1
 
-    def forward(self, x: torch.Tensor):
+    def forward(self, x: torch.Tensor) -> Tuple[torch.Tensor]:
         x = torch.transpose(x, self.dim0, self.dim1)
         return x
 
 
-class CausalBlock1D(Block1D):
-    def __init__(self, dim: int, dim_out: int):
-        super(CausalBlock1D, self).__init__(dim, dim_out)
-        self.block = torch.nn.Sequential(
-            CausalConv1d(dim, dim_out, 3),
-            Transpose(1, 2),
-            nn.LayerNorm(dim_out),
-            Transpose(1, 2),
-            nn.Mish(),
-        )
-
-    def forward(self, x: torch.Tensor, mask: torch.Tensor):
-        output = self.block(x * mask)
-        return output * mask
-
-
-class CausalResnetBlock1D(ResnetBlock1D):
-    def __init__(self, dim: int, dim_out: int, time_emb_dim: int, groups: int = 8):
-        super(CausalResnetBlock1D, self).__init__(dim, dim_out, time_emb_dim, groups)
-        self.block1 = CausalBlock1D(dim, dim_out)
-        self.block2 = CausalBlock1D(dim_out, dim_out)
-
-
 class CausalConv1d(torch.nn.Conv1d):
     def __init__(
         self,
@@ -76,12 +55,339 @@ class CausalConv1d(torch.nn.Conv1d):
                                            padding_mode=padding_mode,
                                            device=device, dtype=dtype)
         assert stride == 1
-        self.causal_padding = (kernel_size - 1, 0)
+        self.causal_padding = kernel_size - 1
 
-    def forward(self, x: torch.Tensor):
-        x = F.pad(x, self.causal_padding)
+    def forward(self, x: torch.Tensor, cache: torch.Tensor = torch.zeros(0, 0, 0)) -> Tuple[torch.Tensor, torch.Tensor]:
+        if cache.size(2) == 0:
+            x = F.pad(x, (self.causal_padding, 0), value=0.0)
+        else:
+            assert cache.size(2) == self.causal_padding
+            x = torch.concat([cache, x], dim=2)
+        cache = x[:, :, -self.causal_padding:]
         x = super(CausalConv1d, self).forward(x)
-        return x
+        return x, cache
+
+
+class CausalBlock1D(Block1D):
+    def __init__(self, dim: int, dim_out: int):
+        super(CausalBlock1D, self).__init__(dim, dim_out)
+        self.block = torch.nn.Sequential(
+            CausalConv1d(dim, dim_out, 3),
+            Transpose(1, 2),
+            nn.LayerNorm(dim_out),
+            Transpose(1, 2),
+            nn.Mish(),
+        )
+
+    def forward(self, x: torch.Tensor, mask: torch.Tensor, cache: torch.Tensor = torch.zeros(0, 0, 0)) -> Tuple[torch.Tensor, torch.Tensor]:
+        output, cache = self.block[0](x * mask, cache)
+        for i in range(1, len(self.block)):
+            output = self.block[i](output)
+        return output * mask, cache
+
+
+class CausalResnetBlock1D(ResnetBlock1D):
+    def __init__(self, dim: int, dim_out: int, time_emb_dim: int, groups: int = 8):
+        super(CausalResnetBlock1D, self).__init__(dim, dim_out, time_emb_dim, groups)
+        self.block1 = CausalBlock1D(dim, dim_out)
+        self.block2 = CausalBlock1D(dim_out, dim_out)
+
+    def forward(self, x: torch.Tensor, mask: torch.Tensor, time_emb: torch.Tensor,
+                block1_cache: torch.Tensor = torch.zeros(0, 0, 0), block2_cache: torch.Tensor = torch.zeros(0, 0, 0)
+                ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
+        h, block1_cache = self.block1(x, mask, block1_cache)
+        h += self.mlp(time_emb).unsqueeze(-1)
+        h, block2_cache = self.block2(h, mask, block2_cache)
+        output = h + self.res_conv(x * mask)
+        return output, block1_cache, block2_cache
+
+
+class CausalAttnProcessor2_0(AttnProcessor2_0):
+    r"""
+    Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
+    """
+
+    def __init__(self):
+        super(CausalAttnProcessor2_0, self).__init__()
+
+    def __call__(
+        self,
+        attn: Attention,
+        hidden_states: torch.FloatTensor,
+        encoder_hidden_states: Optional[torch.FloatTensor] = None,
+        attention_mask: Optional[torch.FloatTensor] = None,
+        temb: Optional[torch.FloatTensor] = None,
+        cache: torch.Tensor = torch.zeros(0, 0, 0, 0),
+        *args,
+        **kwargs,
+    ) -> Tuple[torch.FloatTensor, torch.Tensor]:
+        if len(args) > 0 or kwargs.get("scale", None) is not None:
+            deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. \
+                `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`."
+            deprecate("scale", "1.0.0", deprecation_message)
+
+        residual = hidden_states
+        if attn.spatial_norm is not None:
+            hidden_states = attn.spatial_norm(hidden_states, temb)
+
+        input_ndim = hidden_states.ndim
+
+        if input_ndim == 4:
+            batch_size, channel, height, width = hidden_states.shape
+            hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
+
+        batch_size, sequence_length, _ = (
+            hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
+        )
+
+        if attention_mask is not None:
+            # NOTE do not use attn.prepare_attention_mask as we have already provided the correct attention_mask
+            # scaled_dot_product_attention expects attention_mask shape to be
+            # (batch, heads, source_length, target_length)
+            attention_mask = attention_mask.unsqueeze(dim=1).repeat(1, attn.heads, 1, 1)
+
+        if attn.group_norm is not None:
+            hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
+
+        query = attn.to_q(hidden_states)
+
+        if encoder_hidden_states is None:
+            encoder_hidden_states = hidden_states
+        elif attn.norm_cross:
+            encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
+
+        key_cache = attn.to_k(encoder_hidden_states)
+        value_cache = attn.to_v(encoder_hidden_states)
+        # NOTE here we judge cache.size(0) instead of cache.size(1), because init_cache has size (2, 0, 512, 2)
+        if cache.size(0) != 0:
+            key = torch.concat([cache[:, :, :, 0], key_cache], dim=1)
+            value = torch.concat([cache[:, :, :, 1], value_cache], dim=1)
+        else:
+            key, value = key_cache, value_cache
+        cache = torch.stack([key_cache, value_cache], dim=3)
+
+        inner_dim = key.shape[-1]
+        head_dim = inner_dim // attn.heads
+
+        query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
+
+        key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
+        value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
+
+        # the output of sdp = (batch, num_heads, seq_len, head_dim)
+        # TODO: add support for attn.scale when we move to Torch 2.1
+        hidden_states = F.scaled_dot_product_attention(
+            query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
+        )
+
+        hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
+        hidden_states = hidden_states.to(query.dtype)
+
+        # linear proj
+        hidden_states = attn.to_out[0](hidden_states)
+        # dropout
+        hidden_states = attn.to_out[1](hidden_states)
+
+        if input_ndim == 4:
+            hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
+
+        if attn.residual_connection:
+            hidden_states = hidden_states + residual
+
+        hidden_states = hidden_states / attn.rescale_output_factor
+
+        return hidden_states, cache
+
+
+@maybe_allow_in_graph
+class CausalAttention(Attention):
+    def __init__(
+        self,
+        query_dim: int,
+        cross_attention_dim: Optional[int] = None,
+        heads: int = 8,
+        dim_head: int = 64,
+        dropout: float = 0.0,
+        bias: bool = False,
+        upcast_attention: bool = False,
+        upcast_softmax: bool = False,
+        cross_attention_norm: Optional[str] = None,
+        cross_attention_norm_num_groups: int = 32,
+        qk_norm: Optional[str] = None,
+        added_kv_proj_dim: Optional[int] = None,
+        norm_num_groups: Optional[int] = None,
+        spatial_norm_dim: Optional[int] = None,
+        out_bias: bool = True,
+        scale_qk: bool = True,
+        only_cross_attention: bool = False,
+        eps: float = 1e-5,
+        rescale_output_factor: float = 1.0,
+        residual_connection: bool = False,
+        _from_deprecated_attn_block: bool = False,
+        processor: Optional["AttnProcessor2_0"] = None,
+        out_dim: int = None,
+    ):
+        super(CausalAttention, self).__init__(query_dim, cross_attention_dim, heads, dim_head, dropout, bias, upcast_attention, upcast_softmax,
+                                              cross_attention_norm, cross_attention_norm_num_groups, qk_norm, added_kv_proj_dim, norm_num_groups,
+                                              spatial_norm_dim, out_bias, scale_qk, only_cross_attention, eps, rescale_output_factor, residual_connection,
+                                              _from_deprecated_attn_block, processor, out_dim)
+        processor = CausalAttnProcessor2_0()
+        self.set_processor(processor)
+
+    def forward(
+        self,
+        hidden_states: torch.FloatTensor,
+        encoder_hidden_states: Optional[torch.FloatTensor] = None,
+        attention_mask: Optional[torch.FloatTensor] = None,
+        cache: torch.Tensor = torch.zeros(0, 0, 0, 0),
+        **cross_attention_kwargs,
+    ) -> Tuple[torch.Tensor, torch.Tensor]:
+        r"""
+        The forward method of the `Attention` class.
+
+        Args:
+            hidden_states (`torch.Tensor`):
+                The hidden states of the query.
+            encoder_hidden_states (`torch.Tensor`, *optional*):
+                The hidden states of the encoder.
+            attention_mask (`torch.Tensor`, *optional*):
+                The attention mask to use. If `None`, no mask is applied.
+            **cross_attention_kwargs:
+                Additional keyword arguments to pass along to the cross attention.
+
+        Returns:
+            `torch.Tensor`: The output of the attention layer.
+        """
+        # The `Attention` class can call different attention processors / attention functions
+        # here we simply pass along all tensors to the selected processor class
+        # For standard processors that are defined here, `**cross_attention_kwargs` is empty
+
+        attn_parameters = set(inspect.signature(self.processor.__call__).parameters.keys())
+        unused_kwargs = [k for k, _ in cross_attention_kwargs.items() if k not in attn_parameters]
+        if len(unused_kwargs) > 0:
+            logger.warning(
+                f"cross_attention_kwargs {unused_kwargs} are not expected by {self.processor.__class__.__name__} and will be ignored."
+            )
+        cross_attention_kwargs = {k: w for k, w in cross_attention_kwargs.items() if k in attn_parameters}
+
+        return self.processor(
+            self,
+            hidden_states,
+            encoder_hidden_states=encoder_hidden_states,
+            attention_mask=attention_mask,
+            cache=cache,
+            **cross_attention_kwargs,
+        )
+
+
+@maybe_allow_in_graph
+class CausalBasicTransformerBlock(BasicTransformerBlock):
+    def __init__(
+        self,
+        dim: int,
+        num_attention_heads: int,
+        attention_head_dim: int,
+        dropout=0.0,
+        cross_attention_dim: Optional[int] = None,
+        activation_fn: str = "geglu",
+        num_embeds_ada_norm: Optional[int] = None,
+        attention_bias: bool = False,
+        only_cross_attention: bool = False,
+        double_self_attention: bool = False,
+        upcast_attention: bool = False,
+        norm_elementwise_affine: bool = True,
+        norm_type: str = "layer_norm",
+        final_dropout: bool = False,
+    ):
+        super(CausalBasicTransformerBlock, self).__init__(dim, num_attention_heads, attention_head_dim, dropout,
+                                                          cross_attention_dim, activation_fn, num_embeds_ada_norm,
+                                                          attention_bias, only_cross_attention, double_self_attention,
+                                                          upcast_attention, norm_elementwise_affine, norm_type, final_dropout)
+        self.attn1 = CausalAttention(
+            query_dim=dim,
+            heads=num_attention_heads,
+            dim_head=attention_head_dim,
+            dropout=dropout,
+            bias=attention_bias,
+            cross_attention_dim=cross_attention_dim if only_cross_attention else None,
+            upcast_attention=upcast_attention,
+        )
+
+    def forward(
+        self,
+        hidden_states: torch.FloatTensor,
+        attention_mask: Optional[torch.FloatTensor] = None,
+        encoder_hidden_states: Optional[torch.FloatTensor] = None,
+        encoder_attention_mask: Optional[torch.FloatTensor] = None,
+        timestep: Optional[torch.LongTensor] = None,
+        cross_attention_kwargs: Dict[str, Any] = None,
+        class_labels: Optional[torch.LongTensor] = None,
+        cache: torch.Tensor = torch.zeros(0, 0, 0, 0),
+    ) -> Tuple[torch.Tensor, torch.Tensor]:
+        # Notice that normalization is always applied before the real computation in the following blocks.
+        # 1. Self-Attention
+        if self.use_ada_layer_norm:
+            norm_hidden_states = self.norm1(hidden_states, timestep)
+        elif self.use_ada_layer_norm_zero:
+            norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(
+                hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype
+            )
+        else:
+            norm_hidden_states = self.norm1(hidden_states)
+
+        cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {}
+
+        attn_output, cache = self.attn1(
+            norm_hidden_states,
+            encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
+            attention_mask=encoder_attention_mask if self.only_cross_attention else attention_mask,
+            cache=cache,
+            **cross_attention_kwargs,
+        )
+        if self.use_ada_layer_norm_zero:
+            attn_output = gate_msa.unsqueeze(1) * attn_output
+        hidden_states = attn_output + hidden_states
+
+        # 2. Cross-Attention
+        if self.attn2 is not None:
+            norm_hidden_states = (
+                self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states)
+            )
+
+            attn_output = self.attn2(
+                norm_hidden_states,
+                encoder_hidden_states=encoder_hidden_states,
+                attention_mask=encoder_attention_mask,
+                **cross_attention_kwargs,
+            )
+            hidden_states = attn_output + hidden_states
+
+        # 3. Feed-forward
+        norm_hidden_states = self.norm3(hidden_states)
+
+        if self.use_ada_layer_norm_zero:
+            norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
+
+        if self._chunk_size is not None:
+            # "feed_forward_chunk_size" can be used to save memory
+            if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0:
+                raise ValueError(f"`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: \
+                                 {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`.")
+
+            num_chunks = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size
+            ff_output = torch.cat(
+                [self.ff(hid_slice) for hid_slice in norm_hidden_states.chunk(num_chunks, dim=self._chunk_dim)],
+                dim=self._chunk_dim,
+            )
+        else:
+            ff_output = self.ff(norm_hidden_states)
+
+        if self.use_ada_layer_norm_zero:
+            ff_output = gate_mlp.unsqueeze(1) * ff_output
+
+        hidden_states = ff_output + hidden_states
+
+        return hidden_states, cache
 
 
 class ConditionalDecoder(nn.Module):
@@ -89,7 +395,6 @@ class ConditionalDecoder(nn.Module):
         self,
         in_channels,
         out_channels,
-        causal=False,
         channels=(256, 256),
         dropout=0.05,
         attention_head_dim=64,
@@ -106,7 +411,7 @@ class ConditionalDecoder(nn.Module):
         channels = tuple(channels)
         self.in_channels = in_channels
         self.out_channels = out_channels
-        self.causal = causal
+
         self.time_embeddings = SinusoidalPosEmb(in_channels)
         time_embed_dim = channels[0] * 4
         self.time_mlp = TimestepEmbedding(
@@ -123,8 +428,7 @@ class ConditionalDecoder(nn.Module):
             input_channel = output_channel
             output_channel = channels[i]
             is_last = i == len(channels) - 1
-            resnet = CausalResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim) if self.causal else \
-                ResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim)
+            resnet = ResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim)
             transformer_blocks = nn.ModuleList(
                 [
                     BasicTransformerBlock(
@@ -138,16 +442,14 @@ class ConditionalDecoder(nn.Module):
                 ]
             )
             downsample = (
-                Downsample1D(output_channel) if not is_last else
-                CausalConv1d(output_channel, output_channel, 3) if self.causal else nn.Conv1d(output_channel, output_channel, 3, padding=1)
+                Downsample1D(output_channel) if not is_last else nn.Conv1d(output_channel, output_channel, 3, padding=1)
             )
             self.down_blocks.append(nn.ModuleList([resnet, transformer_blocks, downsample]))
 
         for _ in range(num_mid_blocks):
             input_channel = channels[-1]
             out_channels = channels[-1]
-            resnet = CausalResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim) if self.causal else \
-                ResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim)
+            resnet = ResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim)
 
             transformer_blocks = nn.ModuleList(
                 [
@@ -169,11 +471,7 @@ class ConditionalDecoder(nn.Module):
             input_channel = channels[i] * 2
             output_channel = channels[i + 1]
             is_last = i == len(channels) - 2
-            resnet = CausalResnetBlock1D(
-                dim=input_channel,
-                dim_out=output_channel,
-                time_emb_dim=time_embed_dim,
-            ) if self.causal else ResnetBlock1D(
+            resnet = ResnetBlock1D(
                 dim=input_channel,
                 dim_out=output_channel,
                 time_emb_dim=time_embed_dim,
@@ -193,10 +491,10 @@ class ConditionalDecoder(nn.Module):
             upsample = (
                 Upsample1D(output_channel, use_conv_transpose=True)
                 if not is_last
-                else CausalConv1d(output_channel, output_channel, 3) if self.causal else nn.Conv1d(output_channel, output_channel, 3, padding=1)
+                else nn.Conv1d(output_channel, output_channel, 3, padding=1)
             )
             self.up_blocks.append(nn.ModuleList([resnet, transformer_blocks, upsample]))
-        self.final_block = CausalBlock1D(channels[-1], channels[-1]) if self.causal else Block1D(channels[-1], channels[-1])
+        self.final_block = Block1D(channels[-1], channels[-1])
         self.final_proj = nn.Conv1d(channels[-1], self.out_channels, 1)
         self.initialize_weights()
 
@@ -214,7 +512,7 @@ class ConditionalDecoder(nn.Module):
                 if m.bias is not None:
                     nn.init.constant_(m.bias, 0)
 
-    def forward(self, x, mask, mu, t, spks=None, cond=None):
+    def forward(self, x, mask, mu, t, spks=None, cond=None, streaming=False):
         """Forward pass of the UNet1DConditional model.
 
         Args:
@@ -249,9 +547,8 @@ class ConditionalDecoder(nn.Module):
             mask_down = masks[-1]
             x = resnet(x, mask_down, t)
             x = rearrange(x, "b c t -> b t c").contiguous()
-            # attn_mask = torch.matmul(mask_down.transpose(1, 2).contiguous(), mask_down)
-            attn_mask = add_optional_chunk_mask(x, mask_down.bool(), False, False, 0, self.static_chunk_size, -1)
-            attn_mask = mask_to_bias(attn_mask == 1, x.dtype)
+            attn_mask = add_optional_chunk_mask(x, mask_down.bool(), False, False, 0, 0, -1).repeat(1, x.size(1), 1)
+            attn_mask = mask_to_bias(attn_mask, x.dtype)
             for transformer_block in transformer_blocks:
                 x = transformer_block(
                     hidden_states=x,
@@ -268,9 +565,8 @@ class ConditionalDecoder(nn.Module):
         for resnet, transformer_blocks in self.mid_blocks:
             x = resnet(x, mask_mid, t)
             x = rearrange(x, "b c t -> b t c").contiguous()
-            # attn_mask = torch.matmul(mask_mid.transpose(1, 2).contiguous(), mask_mid)
-            attn_mask = add_optional_chunk_mask(x, mask_mid.bool(), False, False, 0, self.static_chunk_size, -1)
-            attn_mask = mask_to_bias(attn_mask == 1, x.dtype)
+            attn_mask = add_optional_chunk_mask(x, mask_mid.bool(), False, False, 0, 0, -1).repeat(1, x.size(1), 1)
+            attn_mask = mask_to_bias(attn_mask, x.dtype)
             for transformer_block in transformer_blocks:
                 x = transformer_block(
                     hidden_states=x,
@@ -285,9 +581,8 @@ class ConditionalDecoder(nn.Module):
             x = pack([x[:, :, :skip.shape[-1]], skip], "b * t")[0]
             x = resnet(x, mask_up, t)
             x = rearrange(x, "b c t -> b t c").contiguous()
-            # attn_mask = torch.matmul(mask_up.transpose(1, 2).contiguous(), mask_up)
-            attn_mask = add_optional_chunk_mask(x, mask_up.bool(), False, False, 0, self.static_chunk_size, -1)
-            attn_mask = mask_to_bias(attn_mask == 1, x.dtype)
+            attn_mask = add_optional_chunk_mask(x, mask_up.bool(), False, False, 0, 0, -1).repeat(1, x.size(1), 1)
+            attn_mask = mask_to_bias(attn_mask, x.dtype)
             for transformer_block in transformer_blocks:
                 x = transformer_block(
                     hidden_states=x,
@@ -299,3 +594,309 @@ class ConditionalDecoder(nn.Module):
         x = self.final_block(x, mask_up)
         output = self.final_proj(x * mask_up)
         return output * mask
+
+
+class CausalConditionalDecoder(ConditionalDecoder):
+    def __init__(
+        self,
+        in_channels,
+        out_channels,
+        channels=(256, 256),
+        dropout=0.05,
+        attention_head_dim=64,
+        n_blocks=1,
+        num_mid_blocks=2,
+        num_heads=4,
+        act_fn="snake",
+        static_chunk_size=50,
+        num_decoding_left_chunks=2,
+    ):
+        """
+        This decoder requires an input with the same shape of the target. So, if your text content
+        is shorter or longer than the outputs, please re-sampling it before feeding to the decoder.
+        """
+        torch.nn.Module.__init__(self)
+        channels = tuple(channels)
+        self.in_channels = in_channels
+        self.out_channels = out_channels
+        self.time_embeddings = SinusoidalPosEmb(in_channels)
+        time_embed_dim = channels[0] * 4
+        self.time_mlp = TimestepEmbedding(
+            in_channels=in_channels,
+            time_embed_dim=time_embed_dim,
+            act_fn="silu",
+        )
+        self.static_chunk_size = static_chunk_size
+        self.num_decoding_left_chunks = num_decoding_left_chunks
+        self.down_blocks = nn.ModuleList([])
+        self.mid_blocks = nn.ModuleList([])
+        self.up_blocks = nn.ModuleList([])
+
+        output_channel = in_channels
+        for i in range(len(channels)):  # pylint: disable=consider-using-enumerate
+            input_channel = output_channel
+            output_channel = channels[i]
+            is_last = i == len(channels) - 1
+            resnet = CausalResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim)
+            transformer_blocks = nn.ModuleList(
+                [
+                    CausalBasicTransformerBlock(
+                        dim=output_channel,
+                        num_attention_heads=num_heads,
+                        attention_head_dim=attention_head_dim,
+                        dropout=dropout,
+                        activation_fn=act_fn,
+                    )
+                    for _ in range(n_blocks)
+                ]
+            )
+            downsample = (
+                Downsample1D(output_channel) if not is_last else CausalConv1d(output_channel, output_channel, 3)
+            )
+            self.down_blocks.append(nn.ModuleList([resnet, transformer_blocks, downsample]))
+
+        for _ in range(num_mid_blocks):
+            input_channel = channels[-1]
+            out_channels = channels[-1]
+            resnet = CausalResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim)
+
+            transformer_blocks = nn.ModuleList(
+                [
+                    CausalBasicTransformerBlock(
+                        dim=output_channel,
+                        num_attention_heads=num_heads,
+                        attention_head_dim=attention_head_dim,
+                        dropout=dropout,
+                        activation_fn=act_fn,
+                    )
+                    for _ in range(n_blocks)
+                ]
+            )
+
+            self.mid_blocks.append(nn.ModuleList([resnet, transformer_blocks]))
+
+        channels = channels[::-1] + (channels[0],)
+        for i in range(len(channels) - 1):
+            input_channel = channels[i] * 2
+            output_channel = channels[i + 1]
+            is_last = i == len(channels) - 2
+            resnet = CausalResnetBlock1D(
+                dim=input_channel,
+                dim_out=output_channel,
+                time_emb_dim=time_embed_dim,
+            )
+            transformer_blocks = nn.ModuleList(
+                [
+                    CausalBasicTransformerBlock(
+                        dim=output_channel,
+                        num_attention_heads=num_heads,
+                        attention_head_dim=attention_head_dim,
+                        dropout=dropout,
+                        activation_fn=act_fn,
+                    )
+                    for _ in range(n_blocks)
+                ]
+            )
+            upsample = (
+                Upsample1D(output_channel, use_conv_transpose=True)
+                if not is_last
+                else CausalConv1d(output_channel, output_channel, 3)
+            )
+            self.up_blocks.append(nn.ModuleList([resnet, transformer_blocks, upsample]))
+        self.final_block = CausalBlock1D(channels[-1], channels[-1])
+        self.final_proj = nn.Conv1d(channels[-1], self.out_channels, 1)
+        self.initialize_weights()
+
+    def forward(self, x, mask, mu, t, spks=None, cond=None, streaming=False):
+        """Forward pass of the UNet1DConditional model.
+
+        Args:
+            x (torch.Tensor): shape (batch_size, in_channels, time)
+            mask (_type_): shape (batch_size, 1, time)
+            t (_type_): shape (batch_size)
+            spks (_type_, optional): shape: (batch_size, condition_channels). Defaults to None.
+            cond (_type_, optional): placeholder for future use. Defaults to None.
+
+        Raises:
+            ValueError: _description_
+            ValueError: _description_
+
+        Returns:
+            _type_: _description_
+        """
+
+        t = self.time_embeddings(t).to(t.dtype)
+        t = self.time_mlp(t)
+
+        x = pack([x, mu], "b * t")[0]
+
+        if spks is not None:
+            spks = repeat(spks, "b c -> b c t", t=x.shape[-1])
+            x = pack([x, spks], "b * t")[0]
+        if cond is not None:
+            x = pack([x, cond], "b * t")[0]
+
+        hiddens = []
+        masks = [mask]
+        for resnet, transformer_blocks, downsample in self.down_blocks:
+            mask_down = masks[-1]
+            x, _, _ = resnet(x, mask_down, t)
+            x = rearrange(x, "b c t -> b t c").contiguous()
+            if streaming is True:
+                attn_mask = add_optional_chunk_mask(x, mask_down.bool(), False, False, 0, self.static_chunk_size, self.num_decoding_left_chunks)
+            else:
+                attn_mask = add_optional_chunk_mask(x, mask_down.bool(), False, False, 0, 0, -1).repeat(1, x.size(1), 1)
+            attn_mask = mask_to_bias(attn_mask, x.dtype)
+            for transformer_block in transformer_blocks:
+                x, _ = transformer_block(
+                    hidden_states=x,
+                    attention_mask=attn_mask,
+                    timestep=t,
+                )
+            x = rearrange(x, "b t c -> b c t").contiguous()
+            hiddens.append(x)  # Save hidden states for skip connections
+            x, _ = downsample(x * mask_down)
+            masks.append(mask_down[:, :, ::2])
+        masks = masks[:-1]
+        mask_mid = masks[-1]
+
+        for resnet, transformer_blocks in self.mid_blocks:
+            x, _, _ = resnet(x, mask_mid, t)
+            x = rearrange(x, "b c t -> b t c").contiguous()
+            if streaming is True:
+                attn_mask = add_optional_chunk_mask(x, mask_mid.bool(), False, False, 0, self.static_chunk_size, self.num_decoding_left_chunks)
+            else:
+                attn_mask = add_optional_chunk_mask(x, mask_mid.bool(), False, False, 0, 0, -1).repeat(1, x.size(1), 1)
+            attn_mask = mask_to_bias(attn_mask, x.dtype)
+            for transformer_block in transformer_blocks:
+                x, _ = transformer_block(
+                    hidden_states=x,
+                    attention_mask=attn_mask,
+                    timestep=t,
+                )
+            x = rearrange(x, "b t c -> b c t").contiguous()
+
+        for resnet, transformer_blocks, upsample in self.up_blocks:
+            mask_up = masks.pop()
+            skip = hiddens.pop()
+            x = pack([x[:, :, :skip.shape[-1]], skip], "b * t")[0]
+            x, _, _ = resnet(x, mask_up, t)
+            x = rearrange(x, "b c t -> b t c").contiguous()
+            if streaming is True:
+                attn_mask = add_optional_chunk_mask(x, mask_up.bool(), False, False, 0, self.static_chunk_size, self.num_decoding_left_chunks)
+            else:
+                attn_mask = add_optional_chunk_mask(x, mask_up.bool(), False, False, 0, 0, -1).repeat(1, x.size(1), 1)
+            attn_mask = mask_to_bias(attn_mask, x.dtype)
+            for transformer_block in transformer_blocks:
+                x, _ = transformer_block(
+                    hidden_states=x,
+                    attention_mask=attn_mask,
+                    timestep=t,
+                )
+            x = rearrange(x, "b t c -> b c t").contiguous()
+            x, _ = upsample(x * mask_up)
+        x, _ = self.final_block(x, mask_up)
+        output = self.final_proj(x * mask_up)
+        return output * mask
+
+    def forward_chunk(self, x, mask, mu, t, spks=None, cond=None,
+                      down_blocks_conv_cache: torch.Tensor = torch.zeros(0, 0, 0, 0),
+                      down_blocks_kv_cache: torch.Tensor = torch.zeros(0, 0, 0, 0, 0, 0),
+                      mid_blocks_conv_cache: torch.Tensor = torch.zeros(0, 0, 0, 0),
+                      mid_blocks_kv_cache: torch.Tensor = torch.zeros(0, 0, 0, 0, 0, 0),
+                      up_blocks_conv_cache: torch.Tensor = torch.zeros(0, 0, 0, 0),
+                      up_blocks_kv_cache: torch.Tensor = torch.zeros(0, 0, 0, 0, 0, 0),
+                      final_blocks_conv_cache: torch.Tensor = torch.zeros(0, 0, 0)
+                      ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
+        """Forward pass of the UNet1DConditional model.
+
+        Args:
+            x (torch.Tensor): shape (batch_size, in_channels, time)
+            mask (_type_): shape (batch_size, 1, time)
+            t (_type_): shape (batch_size)
+            spks (_type_, optional): shape: (batch_size, condition_channels). Defaults to None.
+            cond (_type_, optional): placeholder for future use. Defaults to None.
+
+        Raises:
+            ValueError: _description_
+            ValueError: _description_
+
+        Returns:
+            _type_: _description_
+        """
+
+        t = self.time_embeddings(t).to(t.dtype)
+        t = self.time_mlp(t)
+
+        x = pack([x, mu], "b * t")[0]
+
+        if spks is not None:
+            spks = repeat(spks, "b c -> b c t", t=x.shape[-1])
+            x = pack([x, spks], "b * t")[0]
+        if cond is not None:
+            x = pack([x, cond], "b * t")[0]
+
+        hiddens = []
+        masks = [mask]
+
+        down_blocks_kv_cache_new = torch.zeros(1, 4, 2, x.size(2), 512, 2).to(x.device)
+        mid_blocks_kv_cache_new = torch.zeros(12, 4, 2, x.size(2), 512, 2).to(x.device)
+        up_blocks_kv_cache_new = torch.zeros(1, 4, 2, x.size(2), 512, 2).to(x.device)
+        for index, (resnet, transformer_blocks, downsample) in enumerate(self.down_blocks):
+            mask_down = masks[-1]
+            x, down_blocks_conv_cache[index][:, :320], down_blocks_conv_cache[index][:, 320: 576] = \
+                resnet(x, mask_down, t, down_blocks_conv_cache[index][:, :320], down_blocks_conv_cache[index][:, 320: 576])
+            x = rearrange(x, "b c t -> b t c").contiguous()
+            attn_mask = torch.ones(x.size(0), x.size(1), x.size(1) + down_blocks_kv_cache.size(3), device=x.device).bool()
+            attn_mask = mask_to_bias(attn_mask, x.dtype)
+            for i, transformer_block in enumerate(transformer_blocks):
+                x, down_blocks_kv_cache_new[index, i] = transformer_block(
+                    hidden_states=x,
+                    attention_mask=attn_mask,
+                    timestep=t,
+                    cache=down_blocks_kv_cache[index, i],
+                )
+            x = rearrange(x, "b t c -> b c t").contiguous()
+            hiddens.append(x)  # Save hidden states for skip connections
+            x, down_blocks_conv_cache[index][:, 576:] = downsample(x * mask_down, down_blocks_conv_cache[index][:, 576:])
+            masks.append(mask_down[:, :, ::2])
+        masks = masks[:-1]
+        mask_mid = masks[-1]
+
+        for index, (resnet, transformer_blocks) in enumerate(self.mid_blocks):
+            x, mid_blocks_conv_cache[index][:, :256], mid_blocks_conv_cache[index][:, 256:] = \
+                resnet(x, mask_mid, t, mid_blocks_conv_cache[index][:, :256], mid_blocks_conv_cache[index][:, 256:])
+            x = rearrange(x, "b c t -> b t c").contiguous()
+            attn_mask = torch.ones(x.size(0), x.size(1), x.size(1) + mid_blocks_kv_cache.size(3), device=x.device).bool()
+            attn_mask = mask_to_bias(attn_mask, x.dtype)
+            for i, transformer_block in enumerate(transformer_blocks):
+                x, mid_blocks_kv_cache_new[index, i] = transformer_block(
+                    hidden_states=x,
+                    attention_mask=attn_mask,
+                    timestep=t,
+                    cache=mid_blocks_kv_cache[index, i]
+                )
+            x = rearrange(x, "b t c -> b c t").contiguous()
+
+        for index, (resnet, transformer_blocks, upsample) in enumerate(self.up_blocks):
+            mask_up = masks.pop()
+            skip = hiddens.pop()
+            x = pack([x[:, :, :skip.shape[-1]], skip], "b * t")[0]
+            x, up_blocks_conv_cache[index][:, :512], up_blocks_conv_cache[index][:, 512: 768] = \
+                resnet(x, mask_up, t, up_blocks_conv_cache[index][:, :512], up_blocks_conv_cache[index][:, 512: 768])
+            x = rearrange(x, "b c t -> b t c").contiguous()
+            attn_mask = torch.ones(x.size(0), x.size(1), x.size(1) + up_blocks_kv_cache.size(3), device=x.device).bool()
+            attn_mask = mask_to_bias(attn_mask, x.dtype)
+            for i, transformer_block in enumerate(transformer_blocks):
+                x, up_blocks_kv_cache_new[index, i] = transformer_block(
+                    hidden_states=x,
+                    attention_mask=attn_mask,
+                    timestep=t,
+                    cache=up_blocks_kv_cache[index, i]
+                )
+            x = rearrange(x, "b t c -> b c t").contiguous()
+            x, up_blocks_conv_cache[index][:, 768:] = upsample(x * mask_up, up_blocks_conv_cache[index][:, 768:])
+        x, final_blocks_conv_cache = self.final_block(x, mask_up, final_blocks_conv_cache)
+        output = self.final_proj(x * mask_up)
+        return output * mask, down_blocks_conv_cache, down_blocks_kv_cache_new, mid_blocks_conv_cache, mid_blocks_kv_cache_new, \
+            up_blocks_conv_cache, up_blocks_kv_cache_new, final_blocks_conv_cache

+ 66 - 16
cosyvoice/flow/flow.py

@@ -91,6 +91,7 @@ class MaskedDiffWithXvec(torch.nn.Module):
         conds = conds.transpose(1, 2)
 
         mask = (~make_pad_mask(feat_len)).to(h)
+        # NOTE this is unnecessary, feat/h already same shape
         feat = F.interpolate(feat.unsqueeze(dim=1), size=h.shape[1:], mode="nearest").squeeze(dim=1)
         loss, _ = self.decoder.compute_loss(
             feat.transpose(1, 2).contiguous(),
@@ -111,16 +112,12 @@ class MaskedDiffWithXvec(torch.nn.Module):
                   prompt_feat_len,
                   embedding,
                   flow_cache):
-        if self.fp16 is True:
-            prompt_feat = prompt_feat.half()
-            embedding = embedding.half()
-
         assert token.shape[0] == 1
         # xvec projection
         embedding = F.normalize(embedding, dim=1)
         embedding = self.spk_embed_affine_layer(embedding)
 
-        # concat text and prompt_text
+        # concat speech token and prompt speech token
         token_len1, token_len2 = prompt_token.shape[1], token.shape[1]
         token, token_len = torch.concat([prompt_token, token], dim=1), prompt_token_len + token_len
         mask = (~make_pad_mask(token_len)).unsqueeze(-1).to(embedding)
@@ -145,7 +142,7 @@ class MaskedDiffWithXvec(torch.nn.Module):
             cond=conds,
             n_timesteps=10,
             prompt_len=mel_len1,
-            flow_cache=flow_cache
+            cache=flow_cache
         )
         feat = feat[:, :, mel_len1:]
         assert feat.shape[2] == mel_len2
@@ -190,6 +187,53 @@ class CausalMaskedDiffWithXvec(torch.nn.Module):
         self.token_mel_ratio = token_mel_ratio
         self.pre_lookahead_len = pre_lookahead_len
 
+    def forward(
+            self,
+            batch: dict,
+            device: torch.device,
+    ) -> Dict[str, Optional[torch.Tensor]]:
+        token = batch['speech_token'].to(device)
+        token_len = batch['speech_token_len'].to(device)
+        feat = batch['speech_feat'].to(device)
+        feat_len = batch['speech_feat_len'].to(device)
+        embedding = batch['embedding'].to(device)
+
+        # NOTE unified training, static_chunk_size > 0 or = 0
+        streaming = True if random.random() < 0.5 else False
+
+        # xvec projection
+        embedding = F.normalize(embedding, dim=1)
+        embedding = self.spk_embed_affine_layer(embedding)
+
+        # concat text and prompt_text
+        mask = (~make_pad_mask(token_len)).float().unsqueeze(-1).to(device)
+        token = self.input_embedding(torch.clamp(token, min=0)) * mask
+
+        # text encode
+        h, h_lengths = self.encoder(token, token_len, streaming=streaming)
+        h = self.encoder_proj(h)
+
+        # get conditions
+        feat = F.interpolate(feat.unsqueeze(dim=1), size=h.shape[1:], mode="nearest").squeeze(dim=1)
+        conds = torch.zeros(feat.shape, device=token.device)
+        for i, j in enumerate(feat_len):
+            if random.random() < 0.5:
+                continue
+            index = random.randint(0, int(0.3 * j))
+            conds[i, :index] = feat[i, :index]
+        conds = conds.transpose(1, 2)
+
+        mask = (~make_pad_mask(h_lengths.sum(dim=-1).squeeze(dim=1))).to(h)
+        loss, _ = self.decoder.compute_loss(
+            feat.transpose(1, 2).contiguous(),
+            mask.unsqueeze(1),
+            h.transpose(1, 2).contiguous(),
+            embedding,
+            cond=conds,
+            streaming=streaming,
+        )
+        return {'loss': loss}
+
     @torch.inference_mode()
     def inference(self,
                   token,
@@ -199,11 +243,8 @@ class CausalMaskedDiffWithXvec(torch.nn.Module):
                   prompt_feat,
                   prompt_feat_len,
                   embedding,
+                  cache,
                   finalize):
-        if self.fp16 is True:
-            prompt_feat = prompt_feat.half()
-            embedding = embedding.half()
-
         assert token.shape[0] == 1
         # xvec projection
         embedding = F.normalize(embedding, dim=1)
@@ -215,9 +256,17 @@ class CausalMaskedDiffWithXvec(torch.nn.Module):
         token = self.input_embedding(torch.clamp(token, min=0)) * mask
 
         # text encode
-        h, h_lengths = self.encoder(token, token_len)
-        if finalize is False:
-            h = h[:, :-self.pre_lookahead_len * self.token_mel_ratio]
+        if finalize is True:
+            h, h_lengths, encoder_cache = self.encoder.forward_chunk(token, token_len, **cache['encoder_cache'])
+        else:
+            token, context = token[:, :-self.pre_lookahead_len], token[:, -self.pre_lookahead_len:]
+            h, h_lengths, encoder_cache = self.encoder.forward_chunk(token, token_len, context=context, **cache['encoder_cache'])
+        cache['encoder_cache']['offset'] = encoder_cache[0]
+        cache['encoder_cache']['pre_lookahead_layer_conv2_cache'] = encoder_cache[1]
+        cache['encoder_cache']['encoders_kv_cache'] = encoder_cache[2]
+        cache['encoder_cache']['upsample_offset'] = encoder_cache[3]
+        cache['encoder_cache']['upsample_conv_cache'] = encoder_cache[4]
+        cache['encoder_cache']['upsample_kv_cache'] = encoder_cache[5]
         mel_len1, mel_len2 = prompt_feat.shape[1], h.shape[1] - prompt_feat.shape[1]
         h = self.encoder_proj(h)
 
@@ -227,13 +276,14 @@ class CausalMaskedDiffWithXvec(torch.nn.Module):
         conds = conds.transpose(1, 2)
 
         mask = (~make_pad_mask(torch.tensor([mel_len1 + mel_len2]))).to(h)
-        feat, _ = self.decoder(
+        feat, cache['decoder_cache'] = self.decoder(
             mu=h.transpose(1, 2).contiguous(),
             mask=mask.unsqueeze(1),
             spks=embedding,
             cond=conds,
-            n_timesteps=10
+            n_timesteps=10,
+            cache=cache['decoder_cache']
         )
         feat = feat[:, :, mel_len1:]
         assert feat.shape[2] == mel_len2
-        return feat.float(), None
+        return feat.float(), cache

+ 146 - 19
cosyvoice/flow/flow_matching.py

@@ -34,7 +34,7 @@ class ConditionalCFM(BASECFM):
         self.lock = threading.Lock()
 
     @torch.inference_mode()
-    def forward(self, mu, mask, n_timesteps, temperature=1.0, spks=None, cond=None, prompt_len=0, flow_cache=torch.zeros(1, 80, 0, 2)):
+    def forward(self, mu, mask, n_timesteps, temperature=1.0, spks=None, cond=None, prompt_len=0, cache=torch.zeros(1, 80, 0, 2)):
         """Forward diffusion
 
         Args:
@@ -54,19 +54,19 @@ class ConditionalCFM(BASECFM):
         """
 
         z = torch.randn_like(mu).to(mu.device).to(mu.dtype) * temperature
-        cache_size = flow_cache.shape[2]
+        cache_size = cache.shape[2]
         # fix prompt and overlap part mu and z
         if cache_size != 0:
-            z[:, :, :cache_size] = flow_cache[:, :, :, 0]
-            mu[:, :, :cache_size] = flow_cache[:, :, :, 1]
+            z[:, :, :cache_size] = cache[:, :, :, 0]
+            mu[:, :, :cache_size] = cache[:, :, :, 1]
         z_cache = torch.concat([z[:, :, :prompt_len], z[:, :, -34:]], dim=2)
         mu_cache = torch.concat([mu[:, :, :prompt_len], mu[:, :, -34:]], dim=2)
-        flow_cache = torch.stack([z_cache, mu_cache], dim=-1)
+        cache = torch.stack([z_cache, mu_cache], dim=-1)
 
         t_span = torch.linspace(0, 1, n_timesteps + 1, device=mu.device, dtype=mu.dtype)
         if self.t_scheduler == 'cosine':
             t_span = 1 - torch.cos(t_span * 0.5 * torch.pi)
-        return self.solve_euler(z, t_span=t_span, mu=mu, mask=mask, spks=spks, cond=cond), flow_cache
+        return self.solve_euler(z, t_span=t_span, mu=mu, mask=mask, spks=spks, cond=cond), cache
 
     def solve_euler(self, x, t_span, mu, mask, spks, cond):
         """
@@ -123,7 +123,7 @@ class ConditionalCFM(BASECFM):
 
     def forward_estimator(self, x, mask, mu, t, spks, cond):
         if isinstance(self.estimator, torch.nn.Module):
-            return self.estimator.forward(x, mask, mu, t, spks, cond)
+            return self.estimator(x, mask, mu, t, spks, cond)
         else:
             with self.lock:
                 self.estimator.set_input_shape('x', (2, 80, x.size(2)))
@@ -133,16 +133,16 @@ class ConditionalCFM(BASECFM):
                 self.estimator.set_input_shape('spks', (2, 80))
                 self.estimator.set_input_shape('cond', (2, 80, x.size(2)))
                 # run trt engine
-                self.estimator.execute_v2([x.contiguous().data_ptr(),
-                                           mask.contiguous().data_ptr(),
-                                           mu.contiguous().data_ptr(),
-                                           t.contiguous().data_ptr(),
-                                           spks.contiguous().data_ptr(),
-                                           cond.contiguous().data_ptr(),
-                                           x.data_ptr()])
+                assert self.estimator.execute_v2([x.contiguous().data_ptr(),
+                                                  mask.contiguous().data_ptr(),
+                                                  mu.contiguous().data_ptr(),
+                                                  t.contiguous().data_ptr(),
+                                                  spks.contiguous().data_ptr(),
+                                                  cond.contiguous().data_ptr(),
+                                                  x.data_ptr()]) is True
             return x
 
-    def compute_loss(self, x1, mask, mu, spks=None, cond=None):
+    def compute_loss(self, x1, mask, mu, spks=None, cond=None, streaming=False):
         """Computes diffusion loss
 
         Args:
@@ -179,7 +179,7 @@ class ConditionalCFM(BASECFM):
             spks = spks * cfg_mask.view(-1, 1)
             cond = cond * cfg_mask.view(-1, 1, 1)
 
-        pred = self.estimator(y, mask, mu, t.squeeze(), spks, cond)
+        pred = self.estimator(y, mask, mu, t.squeeze(), spks, cond, streaming=streaming)
         loss = F.mse_loss(pred * mask, u * mask, reduction="sum") / (torch.sum(mask) * u.shape[1])
         return loss, y
 
@@ -190,7 +190,7 @@ class CausalConditionalCFM(ConditionalCFM):
         self.rand_noise = torch.randn([1, 80, 50 * 300])
 
     @torch.inference_mode()
-    def forward(self, mu, mask, n_timesteps, temperature=1.0, spks=None, cond=None):
+    def forward(self, mu, mask, n_timesteps, temperature=1.0, spks=None, cond=None, cache={}):
         """Forward diffusion
 
         Args:
@@ -209,9 +209,136 @@ class CausalConditionalCFM(ConditionalCFM):
                 shape: (batch_size, n_feats, mel_timesteps)
         """
 
-        z = self.rand_noise[:, :, :mu.size(2)].to(mu.device).to(mu.dtype) * temperature
+        offset = cache.pop('offset')
+        z = self.rand_noise[:, :, :mu.size(2) + offset].to(mu.device).to(mu.dtype) * temperature
+        z = z[:, :, offset:]
+        offset += mu.size(2)
         # fix prompt and overlap part mu and z
         t_span = torch.linspace(0, 1, n_timesteps + 1, device=mu.device, dtype=mu.dtype)
         if self.t_scheduler == 'cosine':
             t_span = 1 - torch.cos(t_span * 0.5 * torch.pi)
-        return self.solve_euler(z, t_span=t_span, mu=mu, mask=mask, spks=spks, cond=cond), None
+        mel, cache = self.solve_euler(z, t_span=t_span, mu=mu, mask=mask, spks=spks, cond=cond, cache=cache)
+        cache['offset'] = offset
+        return mel, cache
+
+    def solve_euler(self, x, t_span, mu, mask, spks, cond, cache):
+        """
+        Fixed euler solver for ODEs.
+        Args:
+            x (torch.Tensor): random noise
+            t_span (torch.Tensor): n_timesteps interpolated
+                shape: (n_timesteps + 1,)
+            mu (torch.Tensor): output of encoder
+                shape: (batch_size, n_feats, mel_timesteps)
+            mask (torch.Tensor): output_mask
+                shape: (batch_size, 1, mel_timesteps)
+            spks (torch.Tensor, optional): speaker ids. Defaults to None.
+                shape: (batch_size, spk_emb_dim)
+            cond: Not used but kept for future purposes
+        """
+        t, _, dt = t_span[0], t_span[-1], t_span[1] - t_span[0]
+        t = t.unsqueeze(dim=0)
+
+        # I am storing this because I can later plot it by putting a debugger here and saving it to a file
+        # Or in future might add like a return_all_steps flag
+        sol = []
+
+        # estimator cache for each step
+        down_blocks_kv_cache_new = torch.zeros(10, 1, 4, 2, x.size(2), 512, 2).to(x)
+        mid_blocks_kv_cache_new = torch.zeros(10, 12, 4, 2, x.size(2), 512, 2).to(x)
+        up_blocks_kv_cache_new = torch.zeros(10, 1, 4, 2, x.size(2), 512, 2).to(x)
+
+        # Do not use concat, it may cause memory format changed and trt infer with wrong results!
+        x_in = torch.zeros([2, 80, x.size(2)], device=x.device, dtype=x.dtype)
+        mask_in = torch.zeros([2, 1, x.size(2)], device=x.device, dtype=x.dtype)
+        mu_in = torch.zeros([2, 80, x.size(2)], device=x.device, dtype=x.dtype)
+        t_in = torch.zeros([2], device=x.device, dtype=x.dtype)
+        spks_in = torch.zeros([2, 80], device=x.device, dtype=x.dtype)
+        cond_in = torch.zeros([2, 80, x.size(2)], device=x.device, dtype=x.dtype)
+        for step in range(1, len(t_span)):
+            # Classifier-Free Guidance inference introduced in VoiceBox
+            x_in[:] = x
+            mask_in[:] = mask
+            mu_in[0] = mu
+            t_in[:] = t.unsqueeze(0)
+            spks_in[0] = spks
+            cond_in[0] = cond
+            cache_step = {k: v[step - 1] for k, v in cache.items()}
+            dphi_dt, cache_step = self.forward_estimator(
+                x_in, mask_in,
+                mu_in, t_in,
+                spks_in,
+                cond_in,
+                cache_step
+            )
+            cache['down_blocks_conv_cache'][step - 1] = cache_step[0]
+            down_blocks_kv_cache_new[step - 1] = cache_step[1]
+            cache['mid_blocks_conv_cache'][step - 1] = cache_step[2]
+            mid_blocks_kv_cache_new[step - 1] = cache_step[3]
+            cache['up_blocks_conv_cache'][step - 1] = cache_step[4]
+            up_blocks_kv_cache_new[step - 1] = cache_step[5]
+            cache['final_blocks_conv_cache'][step - 1] = cache_step[6]
+            dphi_dt, cfg_dphi_dt = torch.split(dphi_dt, [x.size(0), x.size(0)], dim=0)
+            dphi_dt = ((1.0 + self.inference_cfg_rate) * dphi_dt - self.inference_cfg_rate * cfg_dphi_dt)
+            x = x + dt * dphi_dt
+            t = t + dt
+            sol.append(x)
+            if step < len(t_span) - 1:
+                dt = t_span[step + 1] - t
+        cache['down_blocks_kv_cache'] = torch.concat([cache['down_blocks_kv_cache'], down_blocks_kv_cache_new], dim=4)
+        cache['mid_blocks_kv_cache'] = torch.concat([cache['mid_blocks_kv_cache'], mid_blocks_kv_cache_new], dim=4)
+        cache['up_blocks_kv_cache'] = torch.concat([cache['up_blocks_kv_cache'], up_blocks_kv_cache_new], dim=4)
+        return sol[-1].float(), cache
+
+    def forward_estimator(self, x, mask, mu, t, spks, cond, cache):
+        if isinstance(self.estimator, torch.nn.Module):
+            x, cache1, cache2, cache3, cache4, cache5, cache6, cache7 = self.estimator.forward_chunk(x, mask, mu, t, spks, cond, **cache)
+            cache = (cache1, cache2, cache3, cache4, cache5, cache6, cache7)
+        else:
+            with self.lock:
+                self.estimator.set_input_shape('x', (2, 80, x.size(2)))
+                self.estimator.set_input_shape('mask', (2, 1, x.size(2)))
+                self.estimator.set_input_shape('mu', (2, 80, x.size(2)))
+                self.estimator.set_input_shape('t', (2,))
+                self.estimator.set_input_shape('spks', (2, 80))
+                self.estimator.set_input_shape('cond', (2, 80, x.size(2)))
+                self.estimator.set_input_shape('down_blocks_conv_cache', cache['down_blocks_conv_cache'].shape)
+                self.estimator.set_input_shape('down_blocks_kv_cache', cache['down_blocks_kv_cache'].shape)
+                self.estimator.set_input_shape('mid_blocks_conv_cache', cache['mid_blocks_conv_cache'].shape)
+                self.estimator.set_input_shape('mid_blocks_kv_cache', cache['mid_blocks_kv_cache'].shape)
+                self.estimator.set_input_shape('up_blocks_conv_cache', cache['up_blocks_conv_cache'].shape)
+                self.estimator.set_input_shape('up_blocks_kv_cache', cache['up_blocks_kv_cache'].shape)
+                self.estimator.set_input_shape('final_blocks_conv_cache', cache['final_blocks_conv_cache'].shape)
+                # run trt engine
+                down_blocks_kv_cache_out = torch.zeros(1, 4, 2, x.size(2), 512, 2).to(x)
+                mid_blocks_kv_cache_out = torch.zeros(12, 4, 2, x.size(2), 512, 2).to(x)
+                up_blocks_kv_cache_out = torch.zeros(1, 4, 2, x.size(2), 512, 2).to(x)
+                assert self.estimator.execute_v2([x.contiguous().data_ptr(),
+                                                  mask.contiguous().data_ptr(),
+                                                  mu.contiguous().data_ptr(),
+                                                  t.contiguous().data_ptr(),
+                                                  spks.contiguous().data_ptr(),
+                                                  cond.contiguous().data_ptr(),
+                                                  cache['down_blocks_conv_cache'].contiguous().data_ptr(),
+                                                  cache['down_blocks_kv_cache'].contiguous().data_ptr(),
+                                                  cache['mid_blocks_conv_cache'].contiguous().data_ptr(),
+                                                  cache['mid_blocks_kv_cache'].contiguous().data_ptr(),
+                                                  cache['up_blocks_conv_cache'].contiguous().data_ptr(),
+                                                  cache['up_blocks_kv_cache'].contiguous().data_ptr(),
+                                                  cache['final_blocks_conv_cache'].contiguous().data_ptr(),
+                                                  x.data_ptr(),
+                                                  cache['down_blocks_conv_cache'].data_ptr(),
+                                                  down_blocks_kv_cache_out.data_ptr(),
+                                                  cache['mid_blocks_conv_cache'].data_ptr(),
+                                                  mid_blocks_kv_cache_out.data_ptr(),
+                                                  cache['up_blocks_conv_cache'].data_ptr(),
+                                                  up_blocks_kv_cache_out.data_ptr(),
+                                                  cache['final_blocks_conv_cache'].data_ptr()]) is True
+                cache = (cache['down_blocks_conv_cache'],
+                         down_blocks_kv_cache_out,
+                         cache['mid_blocks_conv_cache'],
+                         mid_blocks_kv_cache_out,
+                         cache['up_blocks_conv_cache'],
+                         up_blocks_kv_cache_out,
+                         cache['final_blocks_conv_cache'])
+        return x, cache

+ 1 - 0
cosyvoice/flow/length_regulator.py

@@ -51,6 +51,7 @@ class InterpolateRegulator(nn.Module):
 
     def inference(self, x1, x2, mel_len1, mel_len2, input_frame_rate=50):
         # in inference mode, interploate prompt token and token(head/mid/tail) seprately, so we can get a clear separation point of mel
+        # NOTE 20 corresponds to token_overlap_len in cosyvoice/cli/model.py
         # x in (B, T, D)
         if x2.shape[1] > 40:
             x2_head = F.interpolate(x2[:, :20].transpose(1, 2).contiguous(), size=int(20 / input_frame_rate * 22050 / 256), mode='linear')

+ 91 - 1
cosyvoice/hifigan/discriminator.py

@@ -1,10 +1,16 @@
 import torch
 import torch.nn as nn
-from torch.nn.utils.parametrizations import weight_norm
+import torch.nn.functional as F
+try:
+    from torch.nn.utils.parametrizations import weight_norm, spectral_norm
+except ImportError:
+    from torch.nn.utils import weight_norm, spectral_norm
 from typing import List, Optional, Tuple
 from einops import rearrange
 from torchaudio.transforms import Spectrogram
 
+LRELU_SLOPE = 0.1
+
 
 class MultipleDiscriminator(nn.Module):
     def __init__(
@@ -138,3 +144,87 @@ class DiscriminatorR(nn.Module):
         x += h
 
         return x, fmap
+
+
+class MultiResSpecDiscriminator(torch.nn.Module):
+
+    def __init__(self,
+                 fft_sizes=[1024, 2048, 512],
+                 hop_sizes=[120, 240, 50],
+                 win_lengths=[600, 1200, 240],
+                 window="hann_window"):
+
+        super(MultiResSpecDiscriminator, self).__init__()
+        self.discriminators = nn.ModuleList([
+            SpecDiscriminator(fft_sizes[0], hop_sizes[0], win_lengths[0], window),
+            SpecDiscriminator(fft_sizes[1], hop_sizes[1], win_lengths[1], window),
+            SpecDiscriminator(fft_sizes[2], hop_sizes[2], win_lengths[2], window)])
+
+    def forward(self, y, y_hat):
+        y_d_rs = []
+        y_d_gs = []
+        fmap_rs = []
+        fmap_gs = []
+        for _, d in enumerate(self.discriminators):
+            y_d_r, fmap_r = d(y)
+            y_d_g, fmap_g = d(y_hat)
+            y_d_rs.append(y_d_r)
+            fmap_rs.append(fmap_r)
+            y_d_gs.append(y_d_g)
+            fmap_gs.append(fmap_g)
+
+        return y_d_rs, y_d_gs, fmap_rs, fmap_gs
+
+
+def stft(x, fft_size, hop_size, win_length, window):
+    """Perform STFT and convert to magnitude spectrogram.
+    Args:
+        x (Tensor): Input signal tensor (B, T).
+        fft_size (int): FFT size.
+        hop_size (int): Hop size.
+        win_length (int): Window length.
+        window (str): Window function type.
+    Returns:
+        Tensor: Magnitude spectrogram (B, #frames, fft_size // 2 + 1).
+    """
+    x_stft = torch.stft(x, fft_size, hop_size, win_length, window, return_complex=True)
+
+    # NOTE(kan-bayashi): clamp is needed to avoid nan or inf
+    return torch.abs(x_stft).transpose(2, 1)
+
+
+class SpecDiscriminator(nn.Module):
+    """docstring for Discriminator."""
+
+    def __init__(self, fft_size=1024, shift_size=120, win_length=600, window="hann_window", use_spectral_norm=False):
+        super(SpecDiscriminator, self).__init__()
+        norm_f = weight_norm if use_spectral_norm is False else spectral_norm
+        self.fft_size = fft_size
+        self.shift_size = shift_size
+        self.win_length = win_length
+        self.window = getattr(torch, window)(win_length)
+        self.discriminators = nn.ModuleList([
+            norm_f(nn.Conv2d(1, 32, kernel_size=(3, 9), padding=(1, 4))),
+            norm_f(nn.Conv2d(32, 32, kernel_size=(3, 9), stride=(1, 2), padding=(1, 4))),
+            norm_f(nn.Conv2d(32, 32, kernel_size=(3, 9), stride=(1, 2), padding=(1, 4))),
+            norm_f(nn.Conv2d(32, 32, kernel_size=(3, 9), stride=(1, 2), padding=(1, 4))),
+            norm_f(nn.Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))),
+        ])
+
+        self.out = norm_f(nn.Conv2d(32, 1, 3, 1, 1))
+
+    def forward(self, y):
+
+        fmap = []
+        y = y.squeeze(1)
+        y = stft(y, self.fft_size, self.shift_size, self.win_length, self.window.to(y.device))
+        y = y.unsqueeze(1)
+        for _, d in enumerate(self.discriminators):
+            y = d(y)
+            y = F.leaky_relu(y, LRELU_SLOPE)
+            fmap.append(y)
+
+        y = self.out(y)
+        fmap.append(y)
+
+        return torch.flatten(y, 1, -1), fmap

+ 4 - 1
cosyvoice/hifigan/f0_predictor.py

@@ -13,7 +13,10 @@
 # limitations under the License.
 import torch
 import torch.nn as nn
-from torch.nn.utils.parametrizations import weight_norm
+try:
+    from torch.nn.utils.parametrizations import weight_norm
+except ImportError:
+    from torch.nn.utils import weight_norm
 
 
 class ConvRNNF0Predictor(nn.Module):

+ 4 - 1
cosyvoice/hifigan/generator.py

@@ -23,7 +23,10 @@ import torch.nn.functional as F
 from torch.nn import Conv1d
 from torch.nn import ConvTranspose1d
 from torch.nn.utils import remove_weight_norm
-from torch.nn.utils.parametrizations import weight_norm
+try:
+    from torch.nn.utils.parametrizations import weight_norm
+except ImportError:
+    from torch.nn.utils import weight_norm
 from torch.distributions.uniform import Uniform
 
 from cosyvoice.transformer.activation import Snake

+ 2 - 2
cosyvoice/hifigan/hifigan.py

@@ -41,7 +41,7 @@ class HiFiGan(nn.Module):
         loss_fm = feature_loss(fmap_rs, fmap_gs)
         loss_mel = mel_loss(real_speech, generated_speech, self.mel_spec_transform)
         if self.tpr_loss_weight != 0:
-            loss_tpr = tpr_loss(y_d_rs, y_d_gs, self.tpr_loss_tau)
+            loss_tpr = tpr_loss(y_d_gs, y_d_rs, self.tpr_loss_tau)
         else:
             loss_tpr = torch.zeros(1).to(device)
         loss_f0 = F.l1_loss(generated_f0, pitch_feat)
@@ -56,7 +56,7 @@ class HiFiGan(nn.Module):
         with torch.no_grad():
             generated_speech, generated_f0 = self.generator(batch, device)
         # 2. calculate discriminator outputs
-        y_d_rs, y_d_gs, fmap_rs, fmap_gs = self.discriminator(real_speech, generated_speech)
+        y_d_rs, y_d_gs, fmap_rs, fmap_gs = self.discriminator(real_speech, generated_speech.detach())
         # 3. calculate discriminator losses, tpr losses [Optional]
         loss_disc, _, _ = discriminator_loss(y_d_rs, y_d_gs)
         if self.tpr_loss_weight != 0:

+ 91 - 5
cosyvoice/llm/llm.py

@@ -11,6 +11,7 @@
 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 # See the License for the specific language governing permissions and
 # limitations under the License.
+import random
 from typing import Dict, Optional, Callable, List, Generator
 import torch
 from torch import nn
@@ -21,6 +22,7 @@ from cosyvoice.utils.common import IGNORE_ID
 from cosyvoice.transformer.label_smoothing_loss import LabelSmoothingLoss
 from cosyvoice.utils.common import th_accuracy
 from cosyvoice.utils.file_utils import logging
+from cosyvoice.utils.mask import make_pad_mask
 
 
 class TransformerLM(torch.nn.Module):
@@ -169,9 +171,6 @@ class TransformerLM(torch.nn.Module):
             max_token_text_ratio: float = 20,
             min_token_text_ratio: float = 2,
     ) -> Generator[torch.Tensor, None, None]:
-        if self.fp16 is True:
-            embedding = embedding.half()
-
         device = text.device
         text = torch.concat([prompt_text, text], dim=1)
         text_len += prompt_text_len
@@ -229,6 +228,17 @@ class Qwen2Encoder(torch.nn.Module):
         super().__init__()
         self.model = Qwen2ForCausalLM.from_pretrained(pretrain_path)
 
+    def forward(self, xs: torch.Tensor, xs_lens: torch.Tensor):
+        T = xs.size(1)
+        masks = ~make_pad_mask(xs_lens, T)
+        outs = self.model(
+            inputs_embeds=xs,
+            attention_mask=masks,
+            output_hidden_states=True,
+            return_dict=True,
+        )
+        return outs.hidden_states[-1], masks.unsqueeze(1)
+
     def forward_one_step(self, xs, masks, cache=None):
         input_masks = masks[:, -1, :]
         outs = self.model(
@@ -283,6 +293,82 @@ class Qwen2LM(TransformerLM):
         self.sampling = sampling
         self.mix_ratio = mix_ratio
 
+    def prepare_lm_input_target(self, text_token, text_token_emb, text_token_len, speech_token, speech_token_emb, speech_token_len):
+        lm_target, lm_input = [], []
+        text_token = unpad_sequence(text_token, text_token_len.cpu(), batch_first=True)
+        speech_token = unpad_sequence(speech_token, speech_token_len.cpu(), batch_first=True)
+        text_token_emb = unpad_sequence(text_token_emb, text_token_len.cpu(), batch_first=True)
+        speech_token_emb = unpad_sequence(speech_token_emb, speech_token_len.cpu(), batch_first=True)
+        for i in range(len(text_token)):
+            # bistream sequence
+            if random.random() < 0.5 and speech_token_len[i] / text_token_len[i] > self.mix_ratio[1] / self.mix_ratio[0]:
+                this_lm_target, this_lm_input = [], []
+                this_lm_target.append(IGNORE_ID)
+                this_lm_input.append(self.llm_embedding.weight[self.sos_eos].reshape(1, -1))
+                for j in range(((text_token_len[i] + 1) / self.mix_ratio[0]).ceil().int().item()):
+                    this_text_token = text_token[i][j * self.mix_ratio[0]: (j + 1) * self.mix_ratio[0]].tolist()
+                    this_speech_token = speech_token[i][j * self.mix_ratio[1]: (j + 1) * self.mix_ratio[1]].tolist()
+                    if len(this_text_token) == self.mix_ratio[0]:
+                        assert len(this_speech_token) == self.mix_ratio[1]
+                        this_lm_target += [IGNORE_ID] * (self.mix_ratio[0] - 1)
+                        this_lm_target += this_speech_token
+                        this_lm_target.append(self.speech_token_size + 2)
+                        this_lm_input.append(text_token_emb[i][j * self.mix_ratio[0]: (j + 1) * self.mix_ratio[0]])
+                        this_lm_input.append(speech_token_emb[i][j * self.mix_ratio[1]: (j + 1) * self.mix_ratio[1]])
+                    else:
+                        this_lm_target += [-1] * len(this_text_token)
+                        this_lm_target += speech_token[i][j * self.mix_ratio[1]:].tolist()
+                        this_lm_target.append(self.speech_token_size)
+                        this_lm_input.append(text_token_emb[i][j * self.mix_ratio[0]:])
+                        this_lm_input.append(self.llm_embedding.weight[self.task_id].reshape(1, -1))
+                        this_lm_input.append(speech_token_emb[i][j * self.mix_ratio[1]:])
+                this_lm_target, this_lm_input = torch.tensor(this_lm_target), torch.concat(this_lm_input, dim=0)
+            # unistream sequence
+            else:
+                this_lm_target = torch.tensor([IGNORE_ID] * (1 + text_token_len[i]) + speech_token[i].tolist() + [self.speech_token_size])
+                this_lm_input = torch.concat([self.llm_embedding.weight[self.sos_eos].reshape(1, -1), text_token_emb[i],
+                                              self.llm_embedding.weight[self.task_id].reshape(1, -1), speech_token_emb[i]], dim=0)
+            lm_target.append(this_lm_target)
+            lm_input.append(this_lm_input)
+        lm_input_len = torch.tensor([i.size(0) for i in lm_input], dtype=torch.int32)
+        lm_input = pad_sequence(lm_input, batch_first=True, padding_value=IGNORE_ID)
+        lm_target = pad_sequence(lm_target, batch_first=True, padding_value=IGNORE_ID)
+        return lm_target, lm_input, lm_input_len
+
+    def forward(
+            self,
+            batch: dict,
+            device: torch.device,
+    ) -> Dict[str, Optional[torch.Tensor]]:
+        """
+        Args:
+            text: (B, L, D)
+            text_lengths: (B,)
+            audio: (B, T, N) or (B, T)
+            audio_lengths: (B,)
+        """
+        text_token = batch['text_token'].to(device)
+        text_token_len = batch['text_token_len'].to(device)
+        speech_token = batch['speech_token'].to(device)
+        speech_token_len = batch['speech_token_len'].to(device)
+
+        # 1. encode text_token
+        text_token_emb = self.llm.model.model.embed_tokens(text_token)
+
+        # 2. encode speech_token
+        speech_token_emb = self.speech_embedding(speech_token)
+
+        # 3. prepare llm_input/target
+        lm_target, lm_input, lm_input_len = self.prepare_lm_input_target(text_token, text_token_emb, text_token_len, speech_token, speech_token_emb, speech_token_len)
+        lm_target = lm_target.to(device)
+
+        # 4. run lm forward
+        lm_output, lm_output_mask = self.llm(lm_input, lm_input_len.to(device))
+        logits = self.llm_decoder(lm_output)
+        loss = self.criterion_ce(logits, lm_target.to(device))
+        acc = th_accuracy(logits.view(-1, self.speech_token_size + 3), lm_target, ignore_label=IGNORE_ID)
+        return {'loss': loss, 'acc': acc}
+
     @torch.inference_mode()
     def inference(
             self,
@@ -393,8 +479,8 @@ class Qwen2LM(TransformerLM):
                 while True:
                     seq_len = lm_input.shape[1] if cache is None else lm_input.shape[1] + cache[0][0].size(2)
                     y_pred, cache = self.llm.forward_one_step(lm_input,
-                                                masks=torch.tril(torch.ones((1, seq_len, seq_len), device=lm_input.device)).to(torch.bool),
-                                                cache=cache)
+                                                              masks=torch.tril(torch.ones((1, seq_len, seq_len), device=lm_input.device)).to(torch.bool),
+                                                              cache=cache)
                     logp = self.llm_decoder(y_pred[:, -1]).log_softmax(dim=-1)
                     if next_fill_index != -1 and len(out_tokens) == next_fill_index:
                         top_ids = self.speech_token_size + 2

+ 12 - 4
cosyvoice/transformer/embedding.py

@@ -287,8 +287,16 @@ class EspnetRelPositionalEncoding(torch.nn.Module):
         Returns:
             torch.Tensor: Corresponding encoding
         """
-        pos_emb = self.pe[
-            :,
-            self.pe.size(1) // 2 - size + 1: self.pe.size(1) // 2 + size,
-        ]
+        # How to subscript a Union type:
+        #   https://github.com/pytorch/pytorch/issues/69434
+        if isinstance(offset, int):
+            pos_emb = self.pe[
+                :,
+                self.pe.size(1) // 2 - size - offset + 1: self.pe.size(1) // 2 + size + offset,
+            ]
+        elif isinstance(offset, torch.Tensor):
+            pos_emb = self.pe[
+                :,
+                self.pe.size(1) // 2 - size - offset + 1: self.pe.size(1) // 2 + size + offset,
+            ]
         return pos_emb

+ 124 - 21
cosyvoice/transformer/upsample_encoder.py

@@ -56,11 +56,16 @@ class Upsample1D(nn.Module):
         # In this mode, first repeat interpolate, than conv with stride=1
         self.conv = nn.Conv1d(self.channels, self.out_channels, stride * 2 + 1, stride=1, padding=0)
 
-    def forward(self, inputs: torch.Tensor, input_lengths: torch.Tensor):
+    def forward(self, inputs: torch.Tensor, input_lengths: torch.Tensor, conv_cache: torch.Tensor = torch.zeros(0, 0, 0)) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
         outputs = F.interpolate(inputs, scale_factor=float(self.stride), mode="nearest")
-        outputs = F.pad(outputs, (self.stride * 2, 0), value=0.0)
+        if conv_cache.size(2) == 0:
+            outputs = F.pad(outputs, (self.stride * 2, 0), value=0.0)
+        else:
+            assert conv_cache.size(2) == self.stride * 2
+            outputs = torch.concat([conv_cache, outputs], dim=2)
+        conv_cache_new = outputs[:, :, -self.stride * 2:]
         outputs = self.conv(outputs)
-        return outputs, input_lengths * self.stride
+        return outputs, input_lengths * self.stride, conv_cache_new
 
 
 class PreLookaheadLayer(nn.Module):
@@ -78,22 +83,32 @@ class PreLookaheadLayer(nn.Module):
             kernel_size=3, stride=1, padding=0,
         )
 
-    def forward(self, inputs: torch.Tensor) -> torch.Tensor:
+    def forward(self, inputs: torch.Tensor, context: torch.Tensor = torch.zeros(0, 0, 0), conv2_cache: torch.Tensor = torch.zeros(0, 0, 0)) -> Tuple[torch.Tensor, torch.Tensor]:
         """
         inputs: (batch_size, seq_len, channels)
         """
         outputs = inputs.transpose(1, 2).contiguous()
+        context = context.transpose(1, 2).contiguous()
         # look ahead
-        outputs = F.pad(outputs, (0, self.pre_lookahead_len), mode='constant', value=0.0)
+        if context.size(2) == 0:
+            outputs = F.pad(outputs, (0, self.pre_lookahead_len), mode='constant', value=0.0)
+        else:
+            assert context.size(2) == self.pre_lookahead_len
+            outputs = F.pad(torch.concat([outputs, context], dim=2), (0, self.pre_lookahead_len - context.size(2)), mode='constant', value=0.0)
         outputs = F.leaky_relu(self.conv1(outputs))
         # outputs
-        outputs = F.pad(outputs, (2, 0), mode='constant', value=0.0)
+        if conv2_cache.size(2) == 0:
+            outputs = F.pad(outputs, (self.conv2.kernel_size[0] - 1, 0), mode='constant', value=0.0)
+        else:
+            assert conv2_cache.size(2) == self.conv2.kernel_size[0] - 1
+            outputs = torch.concat([conv2_cache, outputs], dim=2)
+        conv2_cache_new = outputs[:, :, -(self.conv2.kernel_size[0] - 1):]
         outputs = self.conv2(outputs)
         outputs = outputs.transpose(1, 2).contiguous()
 
         # residual connection
         outputs = outputs + inputs
-        return outputs
+        return outputs, conv2_cache_new
 
 
 class UpsampleConformerEncoder(torch.nn.Module):
@@ -240,6 +255,7 @@ class UpsampleConformerEncoder(torch.nn.Module):
         xs_lens: torch.Tensor,
         decoding_chunk_size: int = 0,
         num_decoding_left_chunks: int = -1,
+        streaming: bool = False,
     ) -> Tuple[torch.Tensor, torch.Tensor]:
         """Embed positions in tensor.
 
@@ -270,30 +286,20 @@ class UpsampleConformerEncoder(torch.nn.Module):
             xs = self.global_cmvn(xs)
         xs, pos_emb, masks = self.embed(xs, masks)
         mask_pad = masks  # (B, 1, T/subsample_rate)
-        chunk_masks = add_optional_chunk_mask(xs, masks,
-                                              self.use_dynamic_chunk,
-                                              self.use_dynamic_left_chunk,
-                                              decoding_chunk_size,
-                                              self.static_chunk_size,
-                                              num_decoding_left_chunks)
+        chunk_masks = add_optional_chunk_mask(xs, masks, False, False, 0, self.static_chunk_size if streaming is True else 0, -1)
         # lookahead + conformer encoder
-        xs = self.pre_lookahead_layer(xs)
+        xs, _ = self.pre_lookahead_layer(xs)
         xs = self.forward_layers(xs, chunk_masks, pos_emb, mask_pad)
 
         # upsample + conformer encoder
         xs = xs.transpose(1, 2).contiguous()
-        xs, xs_lens = self.up_layer(xs, xs_lens)
+        xs, xs_lens, _ = self.up_layer(xs, xs_lens)
         xs = xs.transpose(1, 2).contiguous()
         T = xs.size(1)
         masks = ~make_pad_mask(xs_lens, T).unsqueeze(1)  # (B, 1, T)
         xs, pos_emb, masks = self.up_embed(xs, masks)
         mask_pad = masks  # (B, 1, T/subsample_rate)
-        chunk_masks = add_optional_chunk_mask(xs, masks,
-                                              self.use_dynamic_chunk,
-                                              self.use_dynamic_left_chunk,
-                                              decoding_chunk_size,
-                                              self.static_chunk_size * self.up_layer.stride,
-                                              num_decoding_left_chunks)
+        chunk_masks = add_optional_chunk_mask(xs, masks, False, False, 0, self.static_chunk_size * self.up_layer.stride if streaming is True else 0, -1)
         xs = self.forward_up_layers(xs, chunk_masks, pos_emb, mask_pad)
 
         if self.normalize_before:
@@ -316,3 +322,100 @@ class UpsampleConformerEncoder(torch.nn.Module):
         for layer in self.up_encoders:
             xs, chunk_masks, _, _ = layer(xs, chunk_masks, pos_emb, mask_pad)
         return xs
+
+    @torch.jit.export
+    def forward_chunk(
+        self,
+        xs: torch.Tensor,
+        xs_lens: torch.Tensor,
+        offset: int = 0,
+        context: torch.Tensor = torch.zeros(0, 0, 0),
+        pre_lookahead_layer_conv2_cache: torch.Tensor = torch.zeros(0, 0, 0),
+        encoders_kv_cache: torch.Tensor = torch.zeros(0, 0, 0, 0, 0),
+        upsample_offset: int = 0,
+        upsample_conv_cache: torch.Tensor = torch.zeros(0, 0, 0),
+        upsample_kv_cache: torch.Tensor = torch.zeros(0, 0, 0, 0, 0)
+    ) -> Tuple[torch.Tensor, torch.Tensor, Tuple[int, torch.Tensor, torch.Tensor, int, torch.Tensor, torch.Tensor]]:
+        """Embed positions in tensor.
+
+        Args:
+            xs: padded input tensor (B, T, D)
+            xs_lens: input length (B)
+            decoding_chunk_size: decoding chunk size for dynamic chunk
+                0: default for training, use random dynamic chunk.
+                <0: for decoding, use full chunk.
+                >0: for decoding, use fixed chunk size as set.
+            num_decoding_left_chunks: number of left chunks, this is for decoding,
+            the chunk size is decoding_chunk_size.
+                >=0: use num_decoding_left_chunks
+                <0: use all left chunks
+        Returns:
+            encoder output tensor xs, and subsampled masks
+            xs: padded output tensor (B, T' ~= T/subsample_rate, D)
+            masks: torch.Tensor batch padding mask after subsample
+                (B, 1, T' ~= T/subsample_rate)
+        NOTE(xcsong):
+            We pass the `__call__` method of the modules instead of `forward` to the
+            checkpointing API because `__call__` attaches all the hooks of the module.
+            https://discuss.pytorch.org/t/any-different-between-model-input-and-model-forward-input/3690/2
+        """
+        assert xs.size(0) == 1
+        # tmp_masks is just for interface compatibility
+        tmp_masks = torch.ones(1,
+                               xs.size(1),
+                               device=xs.device,
+                               dtype=torch.bool)
+        tmp_masks = tmp_masks.unsqueeze(1)
+        if self.global_cmvn is not None:
+            xs = self.global_cmvn(xs)
+        # NOTE(xcsong): Before embed, shape(xs) is (b=1, time, mel-dim)
+        xs, pos_emb, _ = self.embed(xs, tmp_masks, offset)
+        offset += xs.size(1)
+        tmp_masks = torch.ones(1,
+                               context.size(1),
+                               device=context.device,
+                               dtype=torch.bool)
+        tmp_masks = tmp_masks.unsqueeze(1)
+        if context.size(1) != 0:
+            context, _, _ = self.embed(context, tmp_masks, offset)
+
+        # lookahead + conformer encoder
+        xs, pre_lookahead_layer_conv2_cache = self.pre_lookahead_layer(xs, context, pre_lookahead_layer_conv2_cache)
+        # NOTE in cache mode we do not need to call add_optional_chunk_mask
+        chunk_masks = torch.ones((1, xs.size(1), offset), dtype=torch.bool, device=xs.device)
+        mask_pad = torch.ones((0, 0, 0), dtype=torch.bool, device=xs.device)
+        encoders_kv_cache_list = []
+        for index, layer in enumerate(self.encoders):
+            xs, chunk_masks, encoders_kv_cache_new, _ = layer(xs, chunk_masks, pos_emb, mask_pad, encoders_kv_cache[index])
+            encoders_kv_cache_list.append(encoders_kv_cache_new)
+        encoders_kv_cache = torch.stack(encoders_kv_cache_list, dim=0)
+
+        # upsample
+        xs = xs.transpose(1, 2).contiguous()
+        xs, xs_lens, upsample_conv_cache = self.up_layer(xs, xs_lens, upsample_conv_cache)
+        xs = xs.transpose(1, 2).contiguous()
+
+        # tmp_masks is just for interface compatibility
+        tmp_masks = torch.ones(1,
+                               xs.size(1),
+                               device=xs.device,
+                               dtype=torch.bool)
+        tmp_masks = tmp_masks.unsqueeze(1)
+        xs, pos_emb, masks = self.up_embed(xs, tmp_masks, upsample_offset)
+        upsample_offset += xs.size(1)
+
+        # conformer encoder
+        chunk_masks = torch.ones((1, xs.size(1), upsample_offset), dtype=torch.bool, device=xs.device)
+        mask_pad = torch.ones((0, 0, 0), dtype=torch.bool, device=xs.device)
+        upsample_kv_cache_list = []
+        for index, layer in enumerate(self.up_encoders):
+            xs, chunk_masks, upsample_kv_cache_new, _ = layer(xs, chunk_masks, pos_emb, mask_pad, upsample_kv_cache[index])
+            upsample_kv_cache_list.append(upsample_kv_cache_new)
+        upsample_kv_cache = torch.stack(upsample_kv_cache_list, dim=0)
+
+        if self.normalize_before:
+            xs = self.after_norm(xs)
+        # Here we assume the mask is not changed in encoder layers, so just
+        # return the masks before encoder layers, and the masks will be used
+        # for cross attention with decoder later
+        return xs, masks, (offset, pre_lookahead_layer_conv2_cache, encoders_kv_cache, upsample_offset, upsample_conv_cache, upsample_kv_cache)

+ 4 - 8
cosyvoice/utils/file_utils.py

@@ -47,13 +47,8 @@ def load_wav(wav, target_sr):
     return speech
 
 
-def convert_onnx_to_trt(trt_model, onnx_model, fp16):
+def convert_onnx_to_trt(trt_model, trt_kwargs, onnx_model, fp16):
     import tensorrt as trt
-    _min_shape = [(2, 80, 4), (2, 1, 4), (2, 80, 4), (2,), (2, 80), (2, 80, 4)]
-    _opt_shape = [(2, 80, 193), (2, 1, 193), (2, 80, 193), (2,), (2, 80), (2, 80, 193)]
-    _max_shape = [(2, 80, 6800), (2, 1, 6800), (2, 80, 6800), (2,), (2, 80), (2, 80, 6800)]
-    input_names = ["x", "mask", "mu", "t", "spks", "cond"]
-
     logging.info("Converting onnx to trt...")
     network_flags = 1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)
     logger = trt.Logger(trt.Logger.INFO)
@@ -72,8 +67,8 @@ def convert_onnx_to_trt(trt_model, onnx_model, fp16):
                 print(parser.get_error(error))
             raise ValueError('failed to parse {}'.format(onnx_model))
     # set input shapes
-    for i in range(len(input_names)):
-        profile.set_shape(input_names[i], _min_shape[i], _opt_shape[i], _max_shape[i])
+    for i in range(len(trt_kwargs['input_names'])):
+        profile.set_shape(trt_kwargs['input_names'][i], trt_kwargs['min_shape'][i], trt_kwargs['opt_shape'][i], trt_kwargs['max_shape'][i])
     tensor_dtype = trt.DataType.HALF if fp16 else trt.DataType.FLOAT
     # set input and output data type
     for i in range(network.num_inputs):
@@ -87,3 +82,4 @@ def convert_onnx_to_trt(trt_model, onnx_model, fp16):
     # save trt engine
     with open(trt_model, "wb") as f:
         f.write(engine_bytes)
+    logging.info("Succesfully convert onnx to trt...")

+ 3 - 39
cosyvoice/utils/mask.py

@@ -15,7 +15,6 @@
 # limitations under the License.
 
 import torch
-from cosyvoice.utils.file_utils import logging
 '''
 def subsequent_mask(
         size: int,
@@ -87,7 +86,7 @@ def subsequent_mask(
     return mask
 
 
-def subsequent_chunk_mask_deprecated(
+def subsequent_chunk_mask(
         size: int,
         chunk_size: int,
         num_left_chunks: int = -1,
@@ -125,41 +124,6 @@ def subsequent_chunk_mask_deprecated(
     return ret
 
 
-def subsequent_chunk_mask(
-        size: int,
-        chunk_size: int,
-        num_left_chunks: int = -1,
-        device: torch.device = torch.device("cpu"),
-) -> torch.Tensor:
-    """Create mask for subsequent steps (size, size) with chunk size,
-       this is for streaming encoder
-
-    Args:
-        size (int): size of mask
-        chunk_size (int): size of chunk
-        num_left_chunks (int): number of left chunks
-            <0: use full chunk
-            >=0: use num_left_chunks
-        device (torch.device): "cpu" or "cuda" or torch.Tensor.device
-
-    Returns:
-        torch.Tensor: mask
-
-    Examples:
-        >>> subsequent_chunk_mask(4, 2)
-        [[1, 1, 0, 0],
-         [1, 1, 0, 0],
-         [1, 1, 1, 1],
-         [1, 1, 1, 1]]
-    """
-    # NOTE this modified implementation meets onnx export requirements, but it doesn't support num_left_chunks
-    # actually this is not needed after we have inference cache implemented, will remove it later
-    pos_idx = torch.arange(size, device=device)
-    block_value = (torch.div(pos_idx, chunk_size, rounding_mode='trunc') + 1) * chunk_size
-    ret = pos_idx.unsqueeze(0) < block_value.unsqueeze(1)
-    return ret
-
-
 def add_optional_chunk_mask(xs: torch.Tensor,
                             masks: torch.Tensor,
                             use_dynamic_chunk: bool,
@@ -233,8 +197,8 @@ def add_optional_chunk_mask(xs: torch.Tensor,
         chunk_masks = masks
     assert chunk_masks.dtype == torch.bool
     if (chunk_masks.sum(dim=-1) == 0).sum().item() != 0:
-        logging.warning('get chunk_masks all false at some timestep, force set to true, make sure they are masked in futuer computation!')
-        chunk_masks[chunk_masks.sum(dim=-1)==0] = True
+        print('get chunk_masks all false at some timestep, force set to true, make sure they are masked in futuer computation!')
+        chunk_masks[chunk_masks.sum(dim=-1) == 0] = True
     return chunk_masks
 
 

+ 5 - 1
cosyvoice/utils/train_utils.py

@@ -286,11 +286,15 @@ def update_parameter_and_lr(model, optimizer, scheduler, scaler, info_dict):
             # optimizer.step().
             if torch.isfinite(grad_norm):
                 scaler.step(optimizer)
+            else:
+                logging.warning('get infinite grad_norm, check your code/data if it appears frequently')
             scaler.update()
         else:
             grad_norm = clip_grad_norm_(model.parameters(), info_dict['grad_clip'])
             if torch.isfinite(grad_norm):
                 optimizer.step()
+            else:
+                logging.warning('get infinite grad_norm, check your code/data if it appears frequently')
         optimizer.zero_grad()
         scheduler.step()
     info_dict["lr"] = optimizer.param_groups[0]['lr']
@@ -336,7 +340,7 @@ def log_per_save(writer, info_dict):
     rank = int(os.environ.get('RANK', 0))
     logging.info(
         'Epoch {} Step {} CV info lr {} {} rank {}'.format(
-            epoch, step + 1, lr, rank, ' '.join(['{}_{}'.format(k, v) for k, v in loss_dict.items()])))
+            epoch, step + 1, lr, rank, ' '.join(['{} {}'.format(k, v) for k, v in loss_dict.items()])))
 
     if writer is not None:
         for k in ['epoch', 'lr']:

+ 1 - 1
examples/libritts/cosyvoice/conf/cosyvoice.fromscratch.yaml

@@ -147,7 +147,7 @@ hifigan: !new:cosyvoice.hifigan.hifigan.HiFiGan
     generator: !ref <hift>
     discriminator: !new:cosyvoice.hifigan.discriminator.MultipleDiscriminator
         mpd: !new:matcha.hifigan.models.MultiPeriodDiscriminator
-        mrd: !new:cosyvoice.hifigan.discriminator.MultiResolutionDiscriminator
+        mrd: !new:cosyvoice.hifigan.discriminator.MultiResSpecDiscriminator
     mel_spec_transform: [
         !ref <mel_spec_transform1>
     ]

+ 1 - 1
examples/libritts/cosyvoice/conf/cosyvoice.yaml

@@ -147,7 +147,7 @@ hifigan: !new:cosyvoice.hifigan.hifigan.HiFiGan
     generator: !ref <hift>
     discriminator: !new:cosyvoice.hifigan.discriminator.MultipleDiscriminator
         mpd: !new:matcha.hifigan.models.MultiPeriodDiscriminator
-        mrd: !new:cosyvoice.hifigan.discriminator.MultiResolutionDiscriminator
+        mrd: !new:cosyvoice.hifigan.discriminator.MultiResSpecDiscriminator
     mel_spec_transform: [
         !ref <mel_spec_transform1>
     ]

+ 233 - 0
examples/libritts/cosyvoice2/conf/cosyvoice2.yaml

@@ -0,0 +1,233 @@
+# set random seed, so that you may reproduce your result.
+__set_seed1: !apply:random.seed [1986]
+__set_seed2: !apply:numpy.random.seed [1986]
+__set_seed3: !apply:torch.manual_seed [1986]
+__set_seed4: !apply:torch.cuda.manual_seed_all [1986]
+
+# fixed params
+sample_rate: 24000
+llm_input_size: 896
+llm_output_size: 896
+spk_embed_dim: 192
+qwen_pretrain_path: ''
+token_frame_rate: 25
+token_mel_ratio: 2
+
+# stream related params
+chunk_size: 25 # streaming inference chunk size, in token
+num_decoding_left_chunks: 1 # streaming inference flow decoder left chunk size, <0 means use all left chunks
+
+# model params
+# for all class/function included in this repo, we use !<name> or !<new> for intialization, so that user may find all corresponding class/function according to one single yaml.
+# for system/third_party class/function, we do not require this.
+llm: !new:cosyvoice.llm.llm.Qwen2LM
+    llm_input_size: !ref <llm_input_size>
+    llm_output_size: !ref <llm_output_size>
+    speech_token_size: 6561
+    length_normalized_loss: True
+    lsm_weight: 0
+    mix_ratio: [5, 15]
+    llm: !new:cosyvoice.llm.llm.Qwen2Encoder
+        pretrain_path: !ref <qwen_pretrain_path>
+    sampling: !name:cosyvoice.utils.common.ras_sampling
+        top_p: 0.8
+        top_k: 25
+        win_size: 10
+        tau_r: 0.1
+
+flow: !new:cosyvoice.flow.flow.CausalMaskedDiffWithXvec
+    input_size: 512
+    output_size: 80
+    spk_embed_dim: !ref <spk_embed_dim>
+    output_type: 'mel'
+    vocab_size: 6561
+    input_frame_rate: !ref <token_frame_rate>
+    only_mask_loss: True
+    token_mel_ratio: !ref <token_mel_ratio>
+    pre_lookahead_len: 3
+    encoder: !new:cosyvoice.transformer.upsample_encoder.UpsampleConformerEncoder
+        output_size: 512
+        attention_heads: 8
+        linear_units: 2048
+        num_blocks: 6
+        dropout_rate: 0.1
+        positional_dropout_rate: 0.1
+        attention_dropout_rate: 0.1
+        normalize_before: True
+        input_layer: 'linear'
+        pos_enc_layer_type: 'rel_pos_espnet'
+        selfattention_layer_type: 'rel_selfattn'
+        input_size: 512
+        use_cnn_module: False
+        macaron_style: False
+        static_chunk_size: !ref <chunk_size>
+    decoder: !new:cosyvoice.flow.flow_matching.CausalConditionalCFM
+        in_channels: 240
+        n_spks: 1
+        spk_emb_dim: 80
+        cfm_params: !new:omegaconf.DictConfig
+            content:
+                sigma_min: 1e-06
+                solver: 'euler'
+                t_scheduler: 'cosine'
+                training_cfg_rate: 0.2
+                inference_cfg_rate: 0.7
+                reg_loss_type: 'l1'
+        estimator: !new:cosyvoice.flow.decoder.CausalConditionalDecoder
+            in_channels: 320
+            out_channels: 80
+            channels: [256]
+            dropout: 0.0
+            attention_head_dim: 64
+            n_blocks: 4
+            num_mid_blocks: 12
+            num_heads: 8
+            act_fn: 'gelu'
+            static_chunk_size: !ref <chunk_size> * <token_mel_ratio>
+            num_decoding_left_chunks: !ref <num_decoding_left_chunks>
+
+hift: !new:cosyvoice.hifigan.generator.HiFTGenerator
+    in_channels: 80
+    base_channels: 512
+    nb_harmonics: 8
+    sampling_rate: !ref <sample_rate>
+    nsf_alpha: 0.1
+    nsf_sigma: 0.003
+    nsf_voiced_threshold: 10
+    upsample_rates: [8, 5, 3]
+    upsample_kernel_sizes: [16, 11, 7]
+    istft_params:
+        n_fft: 16
+        hop_len: 4
+    resblock_kernel_sizes: [3, 7, 11]
+    resblock_dilation_sizes: [[1, 3, 5], [1, 3, 5], [1, 3, 5]]
+    source_resblock_kernel_sizes: [7, 7, 11]
+    source_resblock_dilation_sizes: [[1, 3, 5], [1, 3, 5], [1, 3, 5]]
+    lrelu_slope: 0.1
+    audio_limit: 0.99
+    f0_predictor: !new:cosyvoice.hifigan.f0_predictor.ConvRNNF0Predictor
+        num_class: 1
+        in_channels: 80
+        cond_channels: 512
+
+# gan related module
+mel_spec_transform1: !name:matcha.utils.audio.mel_spectrogram
+    n_fft: 1920
+    num_mels: 80
+    sampling_rate: !ref <sample_rate>
+    hop_size: 480
+    win_size: 1920
+    fmin: 0
+    fmax: null
+    center: False
+hifigan: !new:cosyvoice.hifigan.hifigan.HiFiGan
+    generator: !ref <hift>
+    discriminator: !new:cosyvoice.hifigan.discriminator.MultipleDiscriminator
+        mpd: !new:matcha.hifigan.models.MultiPeriodDiscriminator
+        mrd: !new:cosyvoice.hifigan.discriminator.MultiResSpecDiscriminator
+    mel_spec_transform: [
+        !ref <mel_spec_transform1>
+    ]
+
+# processor functions
+parquet_opener: !name:cosyvoice.dataset.processor.parquet_opener
+get_tokenizer: !name:cosyvoice.tokenizer.tokenizer.get_qwen_tokenizer
+    token_path: !ref <qwen_pretrain_path>
+    skip_special_tokens: True
+allowed_special: 'all'
+tokenize: !name:cosyvoice.dataset.processor.tokenize
+    get_tokenizer: !ref <get_tokenizer>
+    allowed_special: !ref <allowed_special>
+filter: !name:cosyvoice.dataset.processor.filter
+    max_length: 40960
+    min_length: 100
+    token_max_length: 200
+    token_min_length: 1
+resample: !name:cosyvoice.dataset.processor.resample
+    resample_rate: !ref <sample_rate>
+truncate: !name:cosyvoice.dataset.processor.truncate
+    truncate_length: 24480 # must be a multiplier of hop_size
+feat_extractor: !name:matcha.utils.audio.mel_spectrogram
+    n_fft: 1920
+    num_mels: 80
+    sampling_rate: !ref <sample_rate>
+    hop_size: 480
+    win_size: 1920
+    fmin: 0
+    fmax: 8000
+    center: False
+compute_fbank: !name:cosyvoice.dataset.processor.compute_fbank
+    feat_extractor: !ref <feat_extractor>
+compute_f0: !name:cosyvoice.dataset.processor.compute_f0
+    sample_rate: !ref <sample_rate>
+    hop_size: 480
+parse_embedding: !name:cosyvoice.dataset.processor.parse_embedding
+    normalize: True
+shuffle: !name:cosyvoice.dataset.processor.shuffle
+    shuffle_size: 1000
+sort: !name:cosyvoice.dataset.processor.sort
+    sort_size: 500  # sort_size should be less than shuffle_size
+batch: !name:cosyvoice.dataset.processor.batch
+    batch_type: 'dynamic'
+    max_frames_in_batch: 2000
+padding: !name:cosyvoice.dataset.processor.padding
+    use_spk_embedding: False # change to True during sft
+
+
+# dataset processor pipeline
+data_pipeline: [
+    !ref <parquet_opener>,
+    !ref <tokenize>,
+    !ref <filter>,
+    !ref <resample>,
+    !ref <compute_fbank>,
+    !ref <parse_embedding>,
+    !ref <shuffle>,
+    !ref <sort>,
+    !ref <batch>,
+    !ref <padding>,
+]
+data_pipeline_gan: [
+    !ref <parquet_opener>,
+    !ref <tokenize>,
+    !ref <filter>,
+    !ref <resample>,
+    !ref <truncate>,
+    !ref <compute_fbank>,
+    !ref <compute_f0>,
+    !ref <parse_embedding>,
+    !ref <shuffle>,
+    !ref <sort>,
+    !ref <batch>,
+    !ref <padding>,
+]
+
+# llm flow train conf
+train_conf:
+    optim: adam
+    optim_conf:
+        lr: 1e-5 # change to 1e-5 during sft
+    scheduler: constantlr # change to constantlr during sft
+    scheduler_conf:
+        warmup_steps: 2500
+    max_epoch: 200
+    grad_clip: 5
+    accum_grad: 2
+    log_interval: 100
+    save_per_step: -1
+
+# gan train conf
+train_conf_gan:
+    optim: adam
+    optim_conf:
+        lr: 0.0002 # use small lr for gan training
+    scheduler: constantlr
+    optim_d: adam
+    optim_conf_d:
+        lr: 0.0002 # use small lr for gan training
+    scheduler_d: constantlr
+    max_epoch: 200
+    grad_clip: 5
+    accum_grad: 1 # in gan training, accum_grad must be 1
+    log_interval: 100
+    save_per_step: -1

+ 42 - 0
examples/libritts/cosyvoice2/conf/ds_stage2.json

@@ -0,0 +1,42 @@
+{
+  "train_micro_batch_size_per_gpu": 1,
+  "gradient_accumulation_steps": 1,
+  "steps_per_print": 100,
+  "gradient_clipping": 5,
+  "fp16": {
+    "enabled": false,
+    "auto_cast": false,
+    "loss_scale": 0,
+    "initial_scale_power": 16,
+    "loss_scale_window": 256,
+    "hysteresis": 2,
+    "consecutive_hysteresis": false,
+    "min_loss_scale": 1
+  },
+  "bf16": {
+    "enabled": false
+  },
+  "zero_force_ds_cpu_optimizer": false,
+  "zero_optimization": {
+    "stage": 2,
+    "offload_optimizer": {
+      "device": "none",
+      "pin_memory": true
+    },
+    "allgather_partitions": true,
+    "allgather_bucket_size": 5e8,
+    "overlap_comm": false,
+    "reduce_scatter": true,
+    "reduce_bucket_size": 5e8,
+    "contiguous_gradients" : true
+  },
+  "optimizer": {
+    "type": "AdamW",
+    "params": {
+        "lr": 0.001,
+        "weight_decay": 0.0001,
+        "torch_adam": true,
+        "adam_w_mode": true
+    }
+  }
+}

+ 1 - 0
examples/libritts/cosyvoice2/local

@@ -0,0 +1 @@
+../cosyvoice/local

+ 3 - 0
examples/libritts/cosyvoice2/path.sh

@@ -0,0 +1,3 @@
+# NOTE(kan-bayashi): Use UTF-8 in Python to avoid UnicodeDecodeError when LC_ALL=C
+export PYTHONIOENCODING=UTF-8
+export PYTHONPATH=../../../:../../../third_party/Matcha-TTS:$PYTHONPATH

+ 130 - 0
examples/libritts/cosyvoice2/run.sh

@@ -0,0 +1,130 @@
+#!/bin/bash
+# Copyright 2024 Alibaba Inc. All Rights Reserved.
+. ./path.sh || exit 1;
+
+stage=-1
+stop_stage=3
+
+data_url=www.openslr.org/resources/60
+data_dir=/mnt/lyuxiang.lx/data/tts/openslr/libritts
+pretrained_model_dir=../../../pretrained_models/CosyVoice2-0.5B
+
+if [ ${stage} -le -1 ] && [ ${stop_stage} -ge -1 ]; then
+  echo "Data Download"
+  for part in dev-clean test-clean dev-other test-other train-clean-100 train-clean-360 train-other-500; do
+    local/download_and_untar.sh ${data_dir} ${data_url} ${part}
+  done
+fi
+
+if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
+  echo "Data preparation, prepare wav.scp/text/utt2spk/spk2utt"
+  for x in train-clean-100 train-clean-360 train-other-500 dev-clean dev-other test-clean test-other; do
+    mkdir -p data/$x
+    python local/prepare_data.py --src_dir $data_dir/LibriTTS/$x --des_dir data/$x
+  done
+fi
+
+if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
+  echo "Extract campplus speaker embedding, you will get spk2embedding.pt and utt2embedding.pt in data/$x dir"
+  for x in train-clean-100 train-clean-360 train-other-500 dev-clean dev-other test-clean test-other; do
+    tools/extract_embedding.py --dir data/$x \
+      --onnx_path $pretrained_model_dir/campplus.onnx
+  done
+fi
+
+if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
+  echo "Extract discrete speech token, you will get utt2speech_token.pt in data/$x dir"
+  for x in train-clean-100 train-clean-360 train-other-500 dev-clean dev-other test-clean test-other; do
+    tools/extract_speech_token.py --dir data/$x \
+      --onnx_path $pretrained_model_dir/speech_tokenizer_v2.onnx
+  done
+fi
+
+if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
+  echo "Prepare required parquet format data, you should have prepared wav.scp/text/utt2spk/spk2utt/utt2embedding.pt/spk2embedding.pt/utt2speech_token.pt"
+  for x in train-clean-100 train-clean-360 train-other-500 dev-clean dev-other test-clean test-other; do
+    mkdir -p data/$x/parquet
+    tools/make_parquet_list.py --num_utts_per_parquet 1000 \
+      --num_processes 10 \
+      --src_dir data/$x \
+      --des_dir data/$x/parquet
+  done
+fi
+
+# inference
+if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then
+  echo "Run inference. Please make sure utt in tts_text is in prompt_data"
+  # TODO consider remove bin/inference.py, or use similar initilization method as in readme
+  for mode in sft zero_shot; do
+    python cosyvoice/bin/inference.py --mode $mode \
+      --gpu 0 \
+      --config conf/cosyvoice2.yaml \
+      --prompt_data data/test-clean/parquet/data.list \
+      --prompt_utt2data data/test-clean/parquet/utt2data.list \
+      --tts_text `pwd`/tts_text.json \
+      --qwen_pretrain_path $pretrained_model_dir/CosyVoice-BlankEN \
+      --llm_model $pretrained_model_dir/llm.pt \
+      --flow_model $pretrained_model_dir/flow.pt \
+      --hifigan_model $pretrained_model_dir/hift.pt \
+      --result_dir `pwd`/exp/cosyvoice/test-clean/$mode
+  done
+fi
+
+# train llm
+export CUDA_VISIBLE_DEVICES="0,1,2,3"
+num_gpus=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}')
+job_id=1986
+dist_backend="nccl"
+num_workers=2
+prefetch=100
+train_engine=torch_ddp
+if [ ${stage} -le 5 ] && [ ${stop_stage} -ge 5 ]; then
+  echo "Run train. We only support llm traning for now. If your want to train from scratch, please use conf/cosyvoice.fromscratch.yaml"
+  if [ $train_engine == 'deepspeed' ]; then
+    echo "Notice deepspeed has its own optimizer config. Modify conf/ds_stage2.json if necessary"
+  fi
+  cat data/{train-clean-100,train-clean-360,train-other-500}/parquet/data.list > data/train.data.list
+  cat data/{dev-clean,dev-other}/parquet/data.list > data/dev.data.list
+  # NOTE will update llm/hift training later
+  for model in llm flow; do
+    torchrun --nnodes=1 --nproc_per_node=$num_gpus \
+        --rdzv_id=$job_id --rdzv_backend="c10d" --rdzv_endpoint="localhost:1234" \
+      cosyvoice/bin/train.py \
+      --train_engine $train_engine \
+      --config conf/cosyvoice2.yaml \
+      --train_data data/train.data.list \
+      --cv_data data/dev.data.list \
+      --qwen_pretrain_path $pretrained_model_dir/CosyVoice-BlankEN \
+      --model $model \
+      --checkpoint $pretrained_model_dir/$model.pt \
+      --model_dir `pwd`/exp/cosyvoice2/$model/$train_engine \
+      --tensorboard_dir `pwd`/tensorboard/cosyvoice2/$model/$train_engine \
+      --ddp.dist_backend $dist_backend \
+      --num_workers ${num_workers} \
+      --prefetch ${prefetch} \
+      --pin_memory \
+      --use_amp \
+      --deepspeed_config ./conf/ds_stage2.json \
+      --deepspeed.save_states model+optimizer
+  done
+fi
+
+# average model
+average_num=5
+if [ ${stage} -le 6 ] && [ ${stop_stage} -ge 6 ]; then
+  for model in llm flow hifigan; do
+    decode_checkpoint=`pwd`/exp/cosyvoice/$model/$train_engine/${model}.pt
+    echo "do model average and final checkpoint is $decode_checkpoint"
+    python cosyvoice/bin/average_model.py \
+      --dst_model $decode_checkpoint \
+      --src_path `pwd`/exp/cosyvoice/$model/$train_engine  \
+      --num ${average_num} \
+      --val_best
+  done
+fi
+
+if [ ${stage} -le 7 ] && [ ${stop_stage} -ge 7 ]; then
+  echo "Export your model for inference speedup. Remember copy your llm or flow model to model_dir"
+  python cosyvoice/bin/export_jit.py --model_dir $pretrained_model_dir
+  python cosyvoice/bin/export_onnx.py --model_dir $pretrained_model_dir
+fi

+ 5 - 0
examples/libritts/cosyvoice2/tts_text.json

@@ -0,0 +1,5 @@
+{
+  "1089_134686_000002_000000": [
+    "hello, my name is Jack. What is your name?"
+  ]
+}

+ 2 - 1
requirements.txt

@@ -13,7 +13,7 @@ inflect==7.3.1
 librosa==0.10.2
 lightning==2.2.4
 matplotlib==3.7.5
-modelscope==1.15.0
+modelscope==1.20.0
 networkx==3.1
 omegaconf==2.3.0
 onnx==1.16.0
@@ -21,6 +21,7 @@ onnxruntime-gpu==1.18.0; sys_platform == 'linux'
 onnxruntime==1.18.0; sys_platform == 'darwin' or sys_platform == 'win32'
 openai-whisper==20231117
 protobuf==4.25
+pyarrow==18.1.0
 pydantic==2.7.0
 pyworld==0.3.4
 rich==13.7.1