Bladeren bron

add cosyvoice3 inference code

lyuxiang.lx 1 maand geleden
bovenliggende
commit
bfa835a74b
4 gewijzigde bestanden met toevoegingen van 135 en 86 verwijderingen
  1. 10 84
      README.md
  2. 2 2
      cosyvoice/cli/cosyvoice.py
  3. 26 0
      cosyvoice/utils/common.py
  4. 97 0
      example.py

+ 10 - 84
README.md

@@ -2,7 +2,7 @@
 
 ## 👉🏻 CosyVoice 👈🏻
 
-**CosyVoice 3.0**: [Demos](https://funaudiollm.github.io/cosyvoice3/); [Paper](https://arxiv.org/abs/2505.17589); [CV3-Eval](https://github.com/FunAudioLLM/CV3-Eval)
+**CosyVoice 3.0**: [Demos](https://funaudiollm.github.io/cosyvoice3/); [Paper](https://arxiv.org/abs/2505.17589); [Modelscope](https://www.modelscope.cn/studios/iic/CosyVoice3-0.5B); [CV3-Eval](https://github.com/FunAudioLLM/CV3-Eval)
 
 **CosyVoice 2.0**: [Demos](https://funaudiollm.github.io/cosyvoice2/); [Paper](https://arxiv.org/abs/2412.10117); [Modelscope](https://www.modelscope.cn/studios/iic/CosyVoice2-0.5B); [HuggingFace](https://huggingface.co/spaces/FunAudioLLM/CosyVoice2-0.5B)
 
@@ -29,6 +29,11 @@
 
 ## Roadmap
 
+- [x] 2025/12
+
+    - [x] release cosyvoice3-0.5B base model and its training/inference script
+    - [x] release cosyvoice3-0.5B modelscope gradio space
+
 - [x] 2025/08
 
     - [x] Thanks to the contribution from NVIDIA Yuekai Zhang, add triton trtllm runtime support and cosyvoice2 grpo training support
@@ -96,6 +101,7 @@ We strongly recommend that you download our pretrained `CosyVoice2-0.5B` `CosyVo
 ``` python
 # SDK模型下载
 from modelscope import snapshot_download
+snapshot_download('iic/CosyVoice3-0.5B', local_dir='pretrained_models/CosyVoice3-0.5B')
 snapshot_download('iic/CosyVoice2-0.5B', local_dir='pretrained_models/CosyVoice2-0.5B')
 snapshot_download('iic/CosyVoice-300M', local_dir='pretrained_models/CosyVoice-300M')
 snapshot_download('iic/CosyVoice-300M-SFT', local_dir='pretrained_models/CosyVoice-300M-SFT')
@@ -103,16 +109,6 @@ snapshot_download('iic/CosyVoice-300M-Instruct', local_dir='pretrained_models/Co
 snapshot_download('iic/CosyVoice-ttsfrd', local_dir='pretrained_models/CosyVoice-ttsfrd')
 ```
 
-``` sh
-# git模型下载,请确保已安装git lfs
-mkdir -p pretrained_models
-git clone https://www.modelscope.cn/iic/CosyVoice2-0.5B.git pretrained_models/CosyVoice2-0.5B
-git clone https://www.modelscope.cn/iic/CosyVoice-300M.git pretrained_models/CosyVoice-300M
-git clone https://www.modelscope.cn/iic/CosyVoice-300M-SFT.git pretrained_models/CosyVoice-300M-SFT
-git clone https://www.modelscope.cn/iic/CosyVoice-300M-Instruct.git pretrained_models/CosyVoice-300M-Instruct
-git clone https://www.modelscope.cn/iic/CosyVoice-ttsfrd.git pretrained_models/CosyVoice-ttsfrd
-```
-
 Optionally, you can unzip `ttsfrd` resource and install `ttsfrd` package for better text normalization performance.
 
 Notice that this step is not necessary. If you do not install `ttsfrd` package, we will use wetext by default.
@@ -127,49 +123,9 @@ pip install ttsfrd-0.4.2-cp310-cp310-linux_x86_64.whl
 ### Basic Usage
 
 We strongly recommend using `CosyVoice2-0.5B` for better performance.
-Follow the code below for detailed usage of each model.
-
-``` python
-import sys
-sys.path.append('third_party/Matcha-TTS')
-from cosyvoice.cli.cosyvoice import CosyVoice, CosyVoice2
-from cosyvoice.utils.file_utils import load_wav
-import torchaudio
-```
-
-#### CosyVoice2 Usage
-```python
-cosyvoice = CosyVoice2('pretrained_models/CosyVoice2-0.5B', load_jit=False, load_trt=False, load_vllm=False, fp16=False)
-
-# NOTE if you want to reproduce the results on https://funaudiollm.github.io/cosyvoice2, please add text_frontend=False during inference
-# zero_shot usage
-prompt_speech_16k = load_wav('./asset/zero_shot_prompt.wav', 16000)
-for i, j in enumerate(cosyvoice.inference_zero_shot('收到好友从远方寄来的生日礼物,那份意外的惊喜与深深的祝福让我心中充满了甜蜜的快乐,笑容如花儿般绽放。', '希望你以后能够做的比我还好呦。', prompt_speech_16k, stream=False)):
-    torchaudio.save('zero_shot_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
-
-# save zero_shot spk for future usage
-assert cosyvoice.add_zero_shot_spk('希望你以后能够做的比我还好呦。', prompt_speech_16k, 'my_zero_shot_spk') is True
-for i, j in enumerate(cosyvoice.inference_zero_shot('收到好友从远方寄来的生日礼物,那份意外的惊喜与深深的祝福让我心中充满了甜蜜的快乐,笑容如花儿般绽放。', '', '', zero_shot_spk_id='my_zero_shot_spk', stream=False)):
-    torchaudio.save('zero_shot_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
-cosyvoice.save_spkinfo()
-
-# fine grained control, for supported control, check cosyvoice/tokenizer/tokenizer.py#L248
-for i, j in enumerate(cosyvoice.inference_cross_lingual('在他讲述那个荒诞故事的过程中,他突然[laughter]停下来,因为他自己也被逗笑了[laughter]。', prompt_speech_16k, stream=False)):
-    torchaudio.save('fine_grained_control_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
-
-# instruct usage
-for i, j in enumerate(cosyvoice.inference_instruct2('收到好友从远方寄来的生日礼物,那份意外的惊喜与深深的祝福让我心中充满了甜蜜的快乐,笑容如花儿般绽放。', '用四川话说这句话', prompt_speech_16k, stream=False)):
-    torchaudio.save('instruct_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
-
-# bistream usage, you can use generator as input, this is useful when using text llm model as input
-# NOTE you should still have some basic sentence split logic because llm can not handle arbitrary sentence length
-def text_generator():
-    yield '收到好友从远方寄来的生日礼物,'
-    yield '那份意外的惊喜与深深的祝福'
-    yield '让我心中充满了甜蜜的快乐,'
-    yield '笑容如花儿般绽放。'
-for i, j in enumerate(cosyvoice.inference_zero_shot(text_generator(), '希望你以后能够做的比我还好呦。', prompt_speech_16k, stream=False)):
-    torchaudio.save('zero_shot_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
+Follow the code in `example.py` for detailed usage of each model.
+```sh
+python example.py
 ```
 
 #### CosyVoice2 vllm Usage
@@ -184,36 +140,6 @@ pip install vllm==v0.9.0 transformers==4.51.3 -i https://mirrors.aliyun.com/pypi
 python vllm_example.py
 ```
 
-#### CosyVoice Usage
-```python
-cosyvoice = CosyVoice('pretrained_models/CosyVoice-300M-SFT', load_jit=False, load_trt=False, fp16=False)
-# sft usage
-print(cosyvoice.list_available_spks())
-# change stream=True for chunk stream inference
-for i, j in enumerate(cosyvoice.inference_sft('你好,我是通义生成式语音大模型,请问有什么可以帮您的吗?', '中文女', stream=False)):
-    torchaudio.save('sft_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
-
-cosyvoice = CosyVoice('pretrained_models/CosyVoice-300M')
-# zero_shot usage, <|zh|><|en|><|jp|><|yue|><|ko|> for Chinese/English/Japanese/Cantonese/Korean
-prompt_speech_16k = load_wav('./asset/zero_shot_prompt.wav', 16000)
-for i, j in enumerate(cosyvoice.inference_zero_shot('收到好友从远方寄来的生日礼物,那份意外的惊喜与深深的祝福让我心中充满了甜蜜的快乐,笑容如花儿般绽放。', '希望你以后能够做的比我还好呦。', prompt_speech_16k, stream=False)):
-    torchaudio.save('zero_shot_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
-# cross_lingual usage
-prompt_speech_16k = load_wav('./asset/cross_lingual_prompt.wav', 16000)
-for i, j in enumerate(cosyvoice.inference_cross_lingual('<|en|>And then later on, fully acquiring that company. So keeping management in line, interest in line with the asset that\'s coming into the family is a reason why sometimes we don\'t buy the whole thing.', prompt_speech_16k, stream=False)):
-    torchaudio.save('cross_lingual_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
-# vc usage
-prompt_speech_16k = load_wav('./asset/zero_shot_prompt.wav', 16000)
-source_speech_16k = load_wav('./asset/cross_lingual_prompt.wav', 16000)
-for i, j in enumerate(cosyvoice.inference_vc(source_speech_16k, prompt_speech_16k, stream=False)):
-    torchaudio.save('vc_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
-
-cosyvoice = CosyVoice('pretrained_models/CosyVoice-300M-Instruct')
-# instruct usage, support <laughter></laughter><strong></strong>[laughter][breath]
-for i, j in enumerate(cosyvoice.inference_instruct('在面对挑战时,他展现了非凡的<strong>勇气</strong>与<strong>智慧</strong>。', '中文男', 'Theo \'Crimson\', is a fiery, passionate rebel leader. Fights with fervor for justice, but struggles with impulsiveness.', stream=False)):
-    torchaudio.save('instruct_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
-```
-
 #### Start web demo
 
 You can use our web demo page to get familiar with CosyVoice quickly.

+ 2 - 2
cosyvoice/cli/cosyvoice.py

@@ -182,7 +182,7 @@ class CosyVoice2(CosyVoice):
         raise NotImplementedError('inference_instruct is not implemented for CosyVoice2!')
 
     def inference_instruct2(self, tts_text, instruct_text, prompt_wav, zero_shot_spk_id='', stream=False, speed=1.0, text_frontend=True):
-        assert isinstance(self.model, CosyVoice2Model), 'inference_instruct2 is only implemented for CosyVoice2!'
+        assert isinstance(self.model, CosyVoice2Model) or isinstance(self.model, CosyVoice3Model), 'inference_instruct2 is only implemented for CosyVoice2 and CosyVoice3!'
         for i in tqdm(self.frontend.text_normalize(tts_text, split=True, text_frontend=text_frontend)):
             model_input = self.frontend.frontend_instruct2(i, instruct_text, prompt_wav, self.sample_rate, zero_shot_spk_id)
             start_time = time.time()
@@ -194,7 +194,7 @@ class CosyVoice2(CosyVoice):
                 start_time = time.time()
 
 
-class CosyVoice3(CosyVoice):
+class CosyVoice3(CosyVoice2):
 
     def __init__(self, model_dir, load_jit=False, load_trt=False, load_vllm=False, fp16=False, trt_concurrent=1):
         self.instruct = True if '-Instruct' in model_dir else False

+ 26 - 0
cosyvoice/utils/common.py

@@ -25,6 +25,32 @@ import torch
 
 IGNORE_ID = -1
 
+instruct_list = ["You are a helpful assistant. 请用广东话表达。",
+                 "You are a helpful assistant. 请用东北话表达。",
+                 "You are a helpful assistant. 请用甘肃话表达。",
+                 "You are a helpful assistant. 请用贵州话表达。",
+                 "You are a helpful assistant. 请用河南话表达。",
+                 "You are a helpful assistant. 请用湖北话表达。",
+                 "You are a helpful assistant. 请用湖南话表达。",
+                 "You are a helpful assistant. 请用江西话表达。",
+                 "You are a helpful assistant. 请用闽南话表达。",
+                 "You are a helpful assistant. 请用宁夏话表达。",
+                 "You are a helpful assistant. 请用山西话表达。",
+                 "You are a helpful assistant. 请用陕西话表达。",
+                 "You are a helpful assistant. 请用山东话表达。",
+                 "You are a helpful assistant. 请用上海话表达。",
+                 "You are a helpful assistant. 请用四川话表达。",
+                 "You are a helpful assistant. 请用天津话表达。",
+                 "You are a helpful assistant. 请用云南话表达。",
+                 "You are a helpful assistant. Please say a sentence as loudly as possible.",
+                 "You are a helpful assistant. Please say a sentence in a very soft voice.",
+                 "You are a helpful assistant. 请用尽可能慢地语速说一句话。",
+                 "You are a helpful assistant. 请用尽可能快地语速说一句话。",
+                 "You are a helpful assistant. 请非常开心地说一句话。",
+                 "You are a helpful assistant. 请非常伤心地说一句话。",
+                 "You are a helpful assistant. 请非常生气地说一句话。",
+                 "You are a helpful assistant. 我想体验一下小猪佩奇风格,可以吗?",
+                 "You are a helpful assistant. 你可以尝试用机器人的方式解答吗?"]
 
 def pad_list(xs: List[torch.Tensor], pad_value: int):
     """Perform padding for the list of tensors.

+ 97 - 0
example.py

@@ -0,0 +1,97 @@
+import sys
+sys.path.append('third_party/Matcha-TTS')
+from cosyvoice.cli.cosyvoice import CosyVoice, CosyVoice2, CosyVoice3
+from cosyvoice.utils.file_utils import load_wav
+import torchaudio
+
+
+def cosyvoice_example():
+    """ CosyVoice Usage, check https://fun-audio-llm.github.io/ for more details
+    """
+    cosyvoice = CosyVoice('pretrained_models/CosyVoice-300M-SFT', load_jit=False, load_trt=False, fp16=False)
+    # sft usage
+    print(cosyvoice.list_available_spks())
+    # change stream=True for chunk stream inference
+    for i, j in enumerate(cosyvoice.inference_sft('你好,我是通义生成式语音大模型,请问有什么可以帮您的吗?', '中文女', stream=False)):
+        torchaudio.save('sft_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
+
+    cosyvoice = CosyVoice('pretrained_models/CosyVoice-300M')
+    # zero_shot usage, <|zh|><|en|><|jp|><|yue|><|ko|> for Chinese/English/Japanese/Cantonese/Korean
+    for i, j in enumerate(cosyvoice.inference_zero_shot('收到好友从远方寄来的生日礼物,那份意外的惊喜与深深的祝福让我心中充满了甜蜜的快乐,笑容如花儿般绽放。', '希望你以后能够做的比我还好呦。', './asset/zero_shot_prompt.wav', stream=False)):
+        torchaudio.save('zero_shot_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
+    # cross_lingual usage
+    for i, j in enumerate(cosyvoice.inference_cross_lingual('<|en|>And then later on, fully acquiring that company. So keeping management in line, interest in line with the asset that\'s coming into the family is a reason why sometimes we don\'t buy the whole thing.', './asset/cross_lingual_prompt.wav', stream=False)):
+        torchaudio.save('cross_lingual_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
+    # vc usage
+    for i, j in enumerate(cosyvoice.inference_vc('./asset/zero_shot_prompt.wav', './asset/cross_lingual_prompt.wav', stream=False)):
+        torchaudio.save('vc_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
+
+    cosyvoice = CosyVoice('pretrained_models/CosyVoice-300M-Instruct')
+    # instruct usage, support <laughter></laughter><strong></strong>[laughter][breath]
+    for i, j in enumerate(cosyvoice.inference_instruct('在面对挑战时,他展现了非凡的<strong>勇气</strong>与<strong>智慧</strong>。', '中文男', 'Theo \'Crimson\', is a fiery, passionate rebel leader. Fights with fervor for justice, but struggles with impulsiveness.', stream=False)):
+        torchaudio.save('instruct_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
+
+def cosyvoice2_example():
+    """ CosyVoice2 Usage, check https://funaudiollm.github.io/cosyvoice2/ for more details
+    """
+    cosyvoice = CosyVoice2('pretrained_models/CosyVoice2-0.5B', load_jit=False, load_trt=False, load_vllm=False, fp16=False)
+
+    # NOTE if you want to reproduce the results on https://funaudiollm.github.io/cosyvoice2, please add text_frontend=False during inference
+    # zero_shot usage
+    for i, j in enumerate(cosyvoice.inference_zero_shot('收到好友从远方寄来的生日礼物,那份意外的惊喜与深深的祝福让我心中充满了甜蜜的快乐,笑容如花儿般绽放。', '希望你以后能够做的比我还好呦。', './asset/zero_shot_prompt.wav', stream=False)):
+        torchaudio.save('zero_shot_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
+
+    # save zero_shot spk for future usage
+    assert cosyvoice.add_zero_shot_spk('希望你以后能够做的比我还好呦。', './asset/zero_shot_prompt.wav', 'my_zero_shot_spk') is True
+    for i, j in enumerate(cosyvoice.inference_zero_shot('收到好友从远方寄来的生日礼物,那份意外的惊喜与深深的祝福让我心中充满了甜蜜的快乐,笑容如花儿般绽放。', '', '', zero_shot_spk_id='my_zero_shot_spk', stream=False)):
+        torchaudio.save('zero_shot_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
+    cosyvoice.save_spkinfo()
+
+    # fine grained control, for supported control, check cosyvoice/tokenizer/tokenizer.py#L248
+    for i, j in enumerate(cosyvoice.inference_cross_lingual('在他讲述那个荒诞故事的过程中,他突然[laughter]停下来,因为他自己也被逗笑了[laughter]。', './asset/zero_shot_prompt.wav', stream=False)):
+        torchaudio.save('fine_grained_control_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
+
+    # instruct usage
+    for i, j in enumerate(cosyvoice.inference_instruct2('收到好友从远方寄来的生日礼物,那份意外的惊喜与深深的祝福让我心中充满了甜蜜的快乐,笑容如花儿般绽放。', '用四川话说这句话', './asset/zero_shot_prompt.wav', stream=False)):
+        torchaudio.save('instruct_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
+
+    # bistream usage, you can use generator as input, this is useful when using text llm model as input
+    # NOTE you should still have some basic sentence split logic because llm can not handle arbitrary sentence length
+    def text_generator():
+        yield '收到好友从远方寄来的生日礼物,'
+        yield '那份意外的惊喜与深深的祝福'
+        yield '让我心中充满了甜蜜的快乐,'
+        yield '笑容如花儿般绽放。'
+    for i, j in enumerate(cosyvoice.inference_zero_shot(text_generator(), '希望你以后能够做的比我还好呦。', './asset/zero_shot_prompt.wav', stream=False)):
+        torchaudio.save('zero_shot_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
+
+def cosyvoice3_example():
+    """ CosyVoice3 Usage, check https://funaudiollm.github.io/cosyvoice3/ for more details
+    """
+    cosyvoice = CosyVoice3('pretrained_models/CosyVoice3-0.5B', load_jit=False, load_trt=False, fp16=False)
+    # zero_shot usage
+    for i, j in enumerate(cosyvoice.inference_zero_shot('八百标兵奔北坡,北坡炮兵并排跑,炮兵怕把标兵碰,标兵怕碰炮兵炮。', '希望你以后能够做的比我还好呦。', './asset/zero_shot_prompt.wav', stream=False)):
+        torchaudio.save('zero_shot_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
+
+    # fine grained control, for supported control, check cosyvoice/tokenizer/tokenizer.py#L280
+    for i, j in enumerate(cosyvoice.inference_cross_lingual('[breath]因为他们那一辈人[breath]在乡里面住的要习惯一点,[breath]邻居都很活络,[breath]嗯,都很熟悉。[breath]', './asset/zero_shot_prompt.wav', stream=False)):
+        torchaudio.save('fine_grained_control_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
+
+    # instruct usage
+    for i, j in enumerate(cosyvoice.inference_instruct2('好少咯,一般系放嗰啲国庆啊,中秋嗰啲可能会咯。', 'You are a helpful assistant. 请用广东话表达。', './asset/zero_shot_prompt.wav', stream=False)):
+        torchaudio.save('instruct_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
+    for i, j in enumerate(cosyvoice.inference_instruct2('收到好友从远方寄来的生日礼物,那份意外的惊喜与深深的祝福让我心中充满了甜蜜的快乐,笑容如花儿般绽放。', 'You are a helpful assistant. 请用尽可能快地语速说一句话。', './asset/zero_shot_prompt.wav', stream=False)):
+        torchaudio.save('instruct_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
+
+    # hotfix usage
+    for i, j in enumerate(cosyvoice.inference_zero_shot('高管也通过电话、短信、微信等方式对报道[j][ǐ]予好评。', '希望你以后能够做的比我还好呦。', './asset/zero_shot_prompt.wav', stream=False)):
+        torchaudio.save('hotfix_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
+
+def main():
+    # cosyvoice_example()
+    cosyvoice2_example()
+    cosyvoice3_example()
+
+
+if __name__ == '__main__':
+    main()