Pārlūkot izejas kodu

add trt_concurrent arg

lyuxiang.lx 8 mēneši atpakaļ
vecāks
revīzija
c3250c222f

+ 1 - 0
examples/magicdata-read/cosyvoice/conf

@@ -0,0 +1 @@
+../../libritts/cosyvoice/conf

+ 0 - 203
examples/magicdata-read/cosyvoice/conf/cosyvoice.fromscratch.yaml

@@ -1,203 +0,0 @@
-# set random seed, so that you may reproduce your result.
-__set_seed1: !apply:random.seed [1986]
-__set_seed2: !apply:numpy.random.seed [1986]
-__set_seed3: !apply:torch.manual_seed [1986]
-__set_seed4: !apply:torch.cuda.manual_seed_all [1986]
-
-# fixed params
-sample_rate: 22050
-text_encoder_input_size: 512
-llm_input_size: 1024
-llm_output_size: 1024
-spk_embed_dim: 192
-
-# model params
-# for all class/function included in this repo, we use !<name> or !<new> for intialization, so that user may find all corresponding class/function according to one single yaml.
-# for system/third_party class/function, we do not require this.
-llm: !new:cosyvoice.llm.llm.TransformerLM
-    text_encoder_input_size: !ref <text_encoder_input_size>
-    llm_input_size: !ref <llm_input_size>
-    llm_output_size: !ref <llm_output_size>
-    text_token_size: 51866 # change to 60515 if you want to train with CosyVoice-300M-25Hz recipe
-    speech_token_size: 4096
-    length_normalized_loss: True
-    lsm_weight: 0
-    spk_embed_dim: !ref <spk_embed_dim>
-    text_encoder: !new:cosyvoice.transformer.encoder.ConformerEncoder
-        input_size: !ref <text_encoder_input_size>
-        output_size: 1024
-        attention_heads: 8
-        linear_units: 2048
-        num_blocks: 3
-        dropout_rate: 0.1
-        positional_dropout_rate: 0.1
-        attention_dropout_rate: 0.0
-        normalize_before: True
-        input_layer: 'linear'
-        pos_enc_layer_type: 'rel_pos_espnet'
-        selfattention_layer_type: 'rel_selfattn'
-        use_cnn_module: False
-        macaron_style: False
-        use_dynamic_chunk: False
-        use_dynamic_left_chunk: False
-        static_chunk_size: 1
-    llm: !new:cosyvoice.transformer.encoder.TransformerEncoder
-        input_size: !ref <llm_input_size>
-        output_size: !ref <llm_output_size>
-        attention_heads: 8
-        linear_units: 2048
-        num_blocks: 7
-        dropout_rate: 0.1
-        positional_dropout_rate: 0.1
-        attention_dropout_rate: 0.0
-        input_layer: 'linear_legacy'
-        pos_enc_layer_type: 'rel_pos_espnet'
-        selfattention_layer_type: 'rel_selfattn'
-        static_chunk_size: 1
-    sampling: !name:cosyvoice.utils.common.ras_sampling
-        top_p: 0.8
-        top_k: 25
-        win_size: 10
-        tau_r: 0.1
-
-flow: !new:cosyvoice.flow.flow.MaskedDiffWithXvec
-    input_size: 512
-    output_size: 80
-    spk_embed_dim: !ref <spk_embed_dim>
-    output_type: 'mel'
-    vocab_size: 4096
-    input_frame_rate: 50 # change to 25 if you want to train with CosyVoice-300M-25Hz recipe
-    only_mask_loss: True
-    encoder: !new:cosyvoice.transformer.encoder.ConformerEncoder
-        output_size: 512
-        attention_heads: 4
-        linear_units: 1024
-        num_blocks: 3
-        dropout_rate: 0.1
-        positional_dropout_rate: 0.1
-        attention_dropout_rate: 0.1
-        normalize_before: True
-        input_layer: 'linear'
-        pos_enc_layer_type: 'rel_pos_espnet'
-        selfattention_layer_type: 'rel_selfattn'
-        input_size: 512
-        use_cnn_module: False
-        macaron_style: False
-    length_regulator: !new:cosyvoice.flow.length_regulator.InterpolateRegulator
-        channels: 80
-        sampling_ratios: [1, 1, 1, 1]
-    decoder: !new:cosyvoice.flow.flow_matching.ConditionalCFM
-        in_channels: 240
-        n_spks: 1
-        spk_emb_dim: 80
-        cfm_params: !new:omegaconf.DictConfig
-            content:
-                sigma_min: 1e-06
-                solver: 'euler'
-                t_scheduler: 'cosine'
-                training_cfg_rate: 0.2
-                inference_cfg_rate: 0.7
-                reg_loss_type: 'l1'
-        estimator: !new:cosyvoice.flow.decoder.ConditionalDecoder
-            in_channels: 320
-            out_channels: 80
-            channels: [256, 256]
-            dropout: 0.0
-            attention_head_dim: 64
-            n_blocks: 4
-            num_mid_blocks: 8
-            num_heads: 8
-            act_fn: 'gelu'
-
-hift: !new:cosyvoice.hifigan.generator.HiFTGenerator
-    in_channels: 80
-    base_channels: 512
-    nb_harmonics: 8
-    sampling_rate: !ref <sample_rate>
-    nsf_alpha: 0.1
-    nsf_sigma: 0.003
-    nsf_voiced_threshold: 10
-    upsample_rates: [8, 8]
-    upsample_kernel_sizes: [16, 16]
-    istft_params:
-        n_fft: 16
-        hop_len: 4
-    resblock_kernel_sizes: [3, 7, 11]
-    resblock_dilation_sizes: [[1, 3, 5], [1, 3, 5], [1, 3, 5]]
-    source_resblock_kernel_sizes: [7, 11]
-    source_resblock_dilation_sizes: [[1, 3, 5], [1, 3, 5]]
-    lrelu_slope: 0.1
-    audio_limit: 0.99
-    f0_predictor: !new:cosyvoice.hifigan.f0_predictor.ConvRNNF0Predictor
-        num_class: 1
-        in_channels: 80
-        cond_channels: 512
-
-# processor functions
-parquet_opener: !name:cosyvoice.dataset.processor.parquet_opener
-get_tokenizer: !name:whisper.tokenizer.get_tokenizer # change to !name:cosyvoice.tokenizer.tokenizer.get_tokenizer if you want to train with CosyVoice-300M-25Hz recipe
-    multilingual: True
-    num_languages: 100
-    language: 'en'
-    task: 'transcribe'
-allowed_special: 'all'
-tokenize: !name:cosyvoice.dataset.processor.tokenize
-    get_tokenizer: !ref <get_tokenizer>
-    allowed_special: !ref <allowed_special>
-filter: !name:cosyvoice.dataset.processor.filter
-    max_length: 40960
-    min_length: 0
-    token_max_length: 200
-    token_min_length: 1
-resample: !name:cosyvoice.dataset.processor.resample
-    resample_rate: !ref <sample_rate>
-feat_extractor: !name:matcha.utils.audio.mel_spectrogram
-    n_fft: 1024
-    num_mels: 80
-    sampling_rate: !ref <sample_rate>
-    hop_size: 256
-    win_size: 1024
-    fmin: 0
-    fmax: 8000
-    center: False
-compute_fbank: !name:cosyvoice.dataset.processor.compute_fbank
-    feat_extractor: !ref <feat_extractor>
-parse_embedding: !name:cosyvoice.dataset.processor.parse_embedding
-    normalize: True
-shuffle: !name:cosyvoice.dataset.processor.shuffle
-    shuffle_size: 1000
-sort: !name:cosyvoice.dataset.processor.sort
-    sort_size: 500  # sort_size should be less than shuffle_size
-batch: !name:cosyvoice.dataset.processor.batch
-    batch_type: 'dynamic'
-    max_frames_in_batch: 12000
-padding: !name:cosyvoice.dataset.processor.padding
-    use_spk_embedding: False # change to True during sft
-
-# dataset processor pipeline
-data_pipeline: [
-    !ref <parquet_opener>,
-    !ref <tokenize>,
-    !ref <filter>,
-    !ref <resample>,
-    !ref <compute_fbank>,
-    !ref <parse_embedding>,
-    !ref <shuffle>,
-    !ref <sort>,
-    !ref <batch>,
-    !ref <padding>,
-]
-
-# train conf
-train_conf:
-    optim: adam
-    optim_conf:
-        lr: 0.002 # change to 0.001 if you want to train flow from scratch
-    scheduler: warmuplr
-    scheduler_conf:
-        warmup_steps: 25000
-    max_epoch: 200
-    grad_clip: 5
-    accum_grad: 2
-    log_interval: 100
-    save_per_step: -1

+ 0 - 203
examples/magicdata-read/cosyvoice/conf/cosyvoice.yaml

@@ -1,203 +0,0 @@
-# set random seed, so that you may reproduce your result.
-__set_seed1: !apply:random.seed [1986]
-__set_seed2: !apply:numpy.random.seed [1986]
-__set_seed3: !apply:torch.manual_seed [1986]
-__set_seed4: !apply:torch.cuda.manual_seed_all [1986]
-
-# fixed params
-sample_rate: 22050
-text_encoder_input_size: 512
-llm_input_size: 1024
-llm_output_size: 1024
-spk_embed_dim: 192
-
-# model params
-# for all class/function included in this repo, we use !<name> or !<new> for intialization, so that user may find all corresponding class/function according to one single yaml.
-# for system/third_party class/function, we do not require this.
-llm: !new:cosyvoice.llm.llm.TransformerLM
-    text_encoder_input_size: !ref <text_encoder_input_size>
-    llm_input_size: !ref <llm_input_size>
-    llm_output_size: !ref <llm_output_size>
-    text_token_size: 51866 # change to 60515 if you want to train with CosyVoice-300M-25Hz recipe
-    speech_token_size: 4096
-    length_normalized_loss: True
-    lsm_weight: 0
-    spk_embed_dim: !ref <spk_embed_dim>
-    text_encoder: !new:cosyvoice.transformer.encoder.ConformerEncoder
-        input_size: !ref <text_encoder_input_size>
-        output_size: 1024
-        attention_heads: 16
-        linear_units: 4096
-        num_blocks: 6
-        dropout_rate: 0.1
-        positional_dropout_rate: 0.1
-        attention_dropout_rate: 0.0
-        normalize_before: True
-        input_layer: 'linear'
-        pos_enc_layer_type: 'rel_pos_espnet'
-        selfattention_layer_type: 'rel_selfattn'
-        use_cnn_module: False
-        macaron_style: False
-        use_dynamic_chunk: False
-        use_dynamic_left_chunk: False
-        static_chunk_size: 1
-    llm: !new:cosyvoice.transformer.encoder.TransformerEncoder
-        input_size: !ref <llm_input_size>
-        output_size: !ref <llm_output_size>
-        attention_heads: 16
-        linear_units: 4096
-        num_blocks: 14
-        dropout_rate: 0.1
-        positional_dropout_rate: 0.1
-        attention_dropout_rate: 0.0
-        input_layer: 'linear_legacy'
-        pos_enc_layer_type: 'rel_pos_espnet'
-        selfattention_layer_type: 'rel_selfattn'
-        static_chunk_size: 1
-    sampling: !name:cosyvoice.utils.common.ras_sampling
-        top_p: 0.8
-        top_k: 25
-        win_size: 10
-        tau_r: 0.1
-
-flow: !new:cosyvoice.flow.flow.MaskedDiffWithXvec
-    input_size: 512
-    output_size: 80
-    spk_embed_dim: !ref <spk_embed_dim>
-    output_type: 'mel'
-    vocab_size: 4096
-    input_frame_rate: 50 # change to 25 if you want to train with CosyVoice-300M-25Hz recipe
-    only_mask_loss: True
-    encoder: !new:cosyvoice.transformer.encoder.ConformerEncoder
-        output_size: 512
-        attention_heads: 8
-        linear_units: 2048
-        num_blocks: 6
-        dropout_rate: 0.1
-        positional_dropout_rate: 0.1
-        attention_dropout_rate: 0.1
-        normalize_before: True
-        input_layer: 'linear'
-        pos_enc_layer_type: 'rel_pos_espnet'
-        selfattention_layer_type: 'rel_selfattn'
-        input_size: 512
-        use_cnn_module: False
-        macaron_style: False
-    length_regulator: !new:cosyvoice.flow.length_regulator.InterpolateRegulator
-        channels: 80
-        sampling_ratios: [1, 1, 1, 1]
-    decoder: !new:cosyvoice.flow.flow_matching.ConditionalCFM
-        in_channels: 240
-        n_spks: 1
-        spk_emb_dim: 80
-        cfm_params: !new:omegaconf.DictConfig
-            content:
-                sigma_min: 1e-06
-                solver: 'euler'
-                t_scheduler: 'cosine'
-                training_cfg_rate: 0.2
-                inference_cfg_rate: 0.7
-                reg_loss_type: 'l1'
-        estimator: !new:cosyvoice.flow.decoder.ConditionalDecoder
-            in_channels: 320
-            out_channels: 80
-            channels: [256, 256]
-            dropout: 0.0
-            attention_head_dim: 64
-            n_blocks: 4
-            num_mid_blocks: 12
-            num_heads: 8
-            act_fn: 'gelu'
-
-hift: !new:cosyvoice.hifigan.generator.HiFTGenerator
-    in_channels: 80
-    base_channels: 512
-    nb_harmonics: 8
-    sampling_rate: !ref <sample_rate>
-    nsf_alpha: 0.1
-    nsf_sigma: 0.003
-    nsf_voiced_threshold: 10
-    upsample_rates: [8, 8]
-    upsample_kernel_sizes: [16, 16]
-    istft_params:
-        n_fft: 16
-        hop_len: 4
-    resblock_kernel_sizes: [3, 7, 11]
-    resblock_dilation_sizes: [[1, 3, 5], [1, 3, 5], [1, 3, 5]]
-    source_resblock_kernel_sizes: [7, 11]
-    source_resblock_dilation_sizes: [[1, 3, 5], [1, 3, 5]]
-    lrelu_slope: 0.1
-    audio_limit: 0.99
-    f0_predictor: !new:cosyvoice.hifigan.f0_predictor.ConvRNNF0Predictor
-        num_class: 1
-        in_channels: 80
-        cond_channels: 512
-
-# processor functions
-parquet_opener: !name:cosyvoice.dataset.processor.parquet_opener
-get_tokenizer: !name:whisper.tokenizer.get_tokenizer # change to !name:cosyvoice.tokenizer.tokenizer.get_tokenizer if you want to train with CosyVoice-300M-25Hz recipe
-    multilingual: True
-    num_languages: 100
-    language: 'en'
-    task: 'transcribe'
-allowed_special: 'all'
-tokenize: !name:cosyvoice.dataset.processor.tokenize
-    get_tokenizer: !ref <get_tokenizer>
-    allowed_special: !ref <allowed_special>
-filter: !name:cosyvoice.dataset.processor.filter
-    max_length: 40960
-    min_length: 0
-    token_max_length: 200
-    token_min_length: 1
-resample: !name:cosyvoice.dataset.processor.resample
-    resample_rate: !ref <sample_rate>
-feat_extractor: !name:matcha.utils.audio.mel_spectrogram
-    n_fft: 1024
-    num_mels: 80
-    sampling_rate: !ref <sample_rate>
-    hop_size: 256
-    win_size: 1024
-    fmin: 0
-    fmax: 8000
-    center: False
-compute_fbank: !name:cosyvoice.dataset.processor.compute_fbank
-    feat_extractor: !ref <feat_extractor>
-parse_embedding: !name:cosyvoice.dataset.processor.parse_embedding
-    normalize: True
-shuffle: !name:cosyvoice.dataset.processor.shuffle
-    shuffle_size: 1000
-sort: !name:cosyvoice.dataset.processor.sort
-    sort_size: 500  # sort_size should be less than shuffle_size
-batch: !name:cosyvoice.dataset.processor.batch
-    batch_type: 'dynamic'
-    max_frames_in_batch: 2000
-padding: !name:cosyvoice.dataset.processor.padding
-    use_spk_embedding: False # change to True during sft
-
-# dataset processor pipeline
-data_pipeline: [
-    !ref <parquet_opener>,
-    !ref <tokenize>,
-    !ref <filter>,
-    !ref <resample>,
-    !ref <compute_fbank>,
-    !ref <parse_embedding>,
-    !ref <shuffle>,
-    !ref <sort>,
-    !ref <batch>,
-    !ref <padding>,
-]
-
-# train conf
-train_conf:
-    optim: adam
-    optim_conf:
-        lr: 0.001 # change to 1e-5 during sft
-    scheduler: warmuplr # change to constantlr during sft
-    scheduler_conf:
-        warmup_steps: 2500
-    max_epoch: 200
-    grad_clip: 5
-    accum_grad: 2
-    log_interval: 100
-    save_per_step: -1

+ 0 - 42
examples/magicdata-read/cosyvoice/conf/ds_stage2.json

@@ -1,42 +0,0 @@
-{
-  "train_micro_batch_size_per_gpu": 1,
-  "gradient_accumulation_steps": 1,
-  "steps_per_print": 100,
-  "gradient_clipping": 5,
-  "fp16": {
-    "enabled": false,
-    "auto_cast": false,
-    "loss_scale": 0,
-    "initial_scale_power": 16,
-    "loss_scale_window": 256,
-    "hysteresis": 2,
-    "consecutive_hysteresis": false,
-    "min_loss_scale": 1
-  },
-  "bf16": {
-    "enabled": false
-  },
-  "zero_force_ds_cpu_optimizer": false,
-  "zero_optimization": {
-    "stage": 2,
-    "offload_optimizer": {
-      "device": "none",
-      "pin_memory": true
-    },
-    "allgather_partitions": true,
-    "allgather_bucket_size": 5e8,
-    "overlap_comm": false,
-    "reduce_scatter": true,
-    "reduce_bucket_size": 5e8,
-    "contiguous_gradients" : true
-  },
-  "optimizer": {
-    "type": "AdamW",
-    "params": {
-        "lr": 0.001,
-        "weight_decay": 0.0001,
-        "torch_adam": true,
-        "adam_w_mode": true
-    }
-  }
-}

+ 16 - 1
examples/magicdata-read/cosyvoice/run.sh

@@ -83,7 +83,7 @@ if [ ${stage} -le 5 ] && [ ${stop_stage} -ge 5 ]; then
   fi
   cp data/train/parquet/data.list data/train.data.list
   cp data/dev/parquet/data.list data/dev.data.list
-  for model in llm flow; do
+  for model in llm flow hifigan; do
     torchrun --nnodes=1 --nproc_per_node=$num_gpus \
         --rdzv_id=$job_id --rdzv_backend="c10d" --rdzv_endpoint="localhost:0" \
       cosyvoice/bin/train.py \
@@ -99,11 +99,26 @@ if [ ${stage} -le 5 ] && [ ${stop_stage} -ge 5 ]; then
       --num_workers ${num_workers} \
       --prefetch ${prefetch} \
       --pin_memory \
+      --use_amp \
       --deepspeed_config ./conf/ds_stage2.json \
       --deepspeed.save_states model+optimizer
   done
 fi
 
+# average model
+average_num=5
+if [ ${stage} -le 6 ] && [ ${stop_stage} -ge 6 ]; then
+  for model in llm flow hifigan; do
+    decode_checkpoint=`pwd`/exp/cosyvoice/$model/$train_engine/${model}.pt
+    echo "do model average and final checkpoint is $decode_checkpoint"
+    python cosyvoice/bin/average_model.py \
+      --dst_model $decode_checkpoint \
+      --src_path `pwd`/exp/cosyvoice/$model/$train_engine  \
+      --num ${average_num} \
+      --val_best
+  done
+fi
+
 if [ ${stage} -le 6 ] && [ ${stop_stage} -ge 6 ]; then
   echo "Export your model for inference speedup. Remember copy your llm or flow model to model_dir"
   python cosyvoice/bin/export_jit.py --model_dir $pretrained_model_dir