|
|
@@ -152,7 +152,7 @@ class CosyVoiceFrontEnd:
|
|
|
if resample_rate == 24000:
|
|
|
# cosyvoice2, force speech_feat % speech_token = 2
|
|
|
token_len = min(int(speech_feat.shape[1] / 2), speech_token.shape[1])
|
|
|
- speech_feat, speech_feat_len[:] = speech_feat[:, :2 * token_len], 2* token_len
|
|
|
+ speech_feat, speech_feat_len[:] = speech_feat[:, :2 * token_len], 2 * token_len
|
|
|
speech_token, speech_token_len[:] = speech_token[:, :token_len], token_len
|
|
|
embedding = self._extract_spk_embedding(prompt_speech_16k)
|
|
|
model_input = {'text': tts_text_token, 'text_len': tts_text_token_len,
|
|
|
@@ -181,6 +181,25 @@ class CosyVoiceFrontEnd:
|
|
|
model_input['prompt_text_len'] = instruct_text_token_len
|
|
|
return model_input
|
|
|
|
|
|
+ def frontend_instruct2(self, tts_text, instruct_text, prompt_speech_16k, resample_rate):
|
|
|
+ tts_text_token, tts_text_token_len = self._extract_text_token(tts_text)
|
|
|
+ prompt_text_token, prompt_text_token_len = self._extract_text_token(instruct_text + '<|endofprompt|>')
|
|
|
+ prompt_speech_resample = torchaudio.transforms.Resample(orig_freq=16000, new_freq=resample_rate)(prompt_speech_16k)
|
|
|
+ speech_feat, speech_feat_len = self._extract_speech_feat(prompt_speech_resample)
|
|
|
+ speech_token, speech_token_len = self._extract_speech_token(prompt_speech_16k)
|
|
|
+ if resample_rate == 24000:
|
|
|
+ # cosyvoice2, force speech_feat % speech_token = 2
|
|
|
+ token_len = min(int(speech_feat.shape[1] / 2), speech_token.shape[1])
|
|
|
+ speech_feat, speech_feat_len[:] = speech_feat[:, :2 * token_len], 2 * token_len
|
|
|
+ speech_token, speech_token_len[:] = speech_token[:, :token_len], token_len
|
|
|
+ embedding = self._extract_spk_embedding(prompt_speech_16k)
|
|
|
+ model_input = {'text': tts_text_token, 'text_len': tts_text_token_len,
|
|
|
+ 'prompt_text': prompt_text_token, 'prompt_text_len': prompt_text_token_len,
|
|
|
+ 'flow_prompt_speech_token': speech_token, 'flow_prompt_speech_token_len': speech_token_len,
|
|
|
+ 'prompt_speech_feat': speech_feat, 'prompt_speech_feat_len': speech_feat_len,
|
|
|
+ 'llm_embedding': embedding, 'flow_embedding': embedding}
|
|
|
+ return model_input
|
|
|
+
|
|
|
def frontend_vc(self, source_speech_16k, prompt_speech_16k, resample_rate):
|
|
|
prompt_speech_token, prompt_speech_token_len = self._extract_speech_token(prompt_speech_16k)
|
|
|
prompt_speech_resample = torchaudio.transforms.Resample(orig_freq=16000, new_freq=resample_rate)(prompt_speech_16k)
|