|
|
@@ -69,7 +69,7 @@ class ConditionalCFM(BASECFM):
|
|
|
t_span = 1 - torch.cos(t_span * 0.5 * torch.pi)
|
|
|
return self.solve_euler(z, t_span=t_span, mu=mu, mask=mask, spks=spks, cond=cond), cache
|
|
|
|
|
|
- def solve_euler(self, x, t_span, mu, mask, spks, cond):
|
|
|
+ def solve_euler(self, x, t_span, mu, mask, spks, cond, streaming=False):
|
|
|
"""
|
|
|
Fixed euler solver for ODEs.
|
|
|
Args:
|
|
|
@@ -110,7 +110,8 @@ class ConditionalCFM(BASECFM):
|
|
|
x_in, mask_in,
|
|
|
mu_in, t_in,
|
|
|
spks_in,
|
|
|
- cond_in
|
|
|
+ cond_in,
|
|
|
+ streaming
|
|
|
)
|
|
|
dphi_dt, cfg_dphi_dt = torch.split(dphi_dt, [x.size(0), x.size(0)], dim=0)
|
|
|
dphi_dt = ((1.0 + self.inference_cfg_rate) * dphi_dt - self.inference_cfg_rate * cfg_dphi_dt)
|
|
|
@@ -122,9 +123,9 @@ class ConditionalCFM(BASECFM):
|
|
|
|
|
|
return sol[-1].float()
|
|
|
|
|
|
- def forward_estimator(self, x, mask, mu, t, spks, cond):
|
|
|
+ def forward_estimator(self, x, mask, mu, t, spks, cond, streaming=False):
|
|
|
if isinstance(self.estimator, torch.nn.Module):
|
|
|
- return self.estimator(x, mask, mu, t, spks, cond)
|
|
|
+ return self.estimator(x, mask, mu, t, spks, cond, streaming=streaming)
|
|
|
else:
|
|
|
estimator, trt_engine = self.estimator.acquire_estimator()
|
|
|
estimator.set_input_shape('x', (2, 80, x.size(2)))
|
|
|
@@ -196,7 +197,7 @@ class CausalConditionalCFM(ConditionalCFM):
|
|
|
self.rand_noise = torch.randn([1, 80, 50 * 300])
|
|
|
|
|
|
@torch.inference_mode()
|
|
|
- def forward(self, mu, mask, n_timesteps, temperature=1.0, spks=None, cond=None):
|
|
|
+ def forward(self, mu, mask, n_timesteps, temperature=1.0, spks=None, cond=None, streaming=False):
|
|
|
"""Forward diffusion
|
|
|
|
|
|
Args:
|
|
|
@@ -220,4 +221,4 @@ class CausalConditionalCFM(ConditionalCFM):
|
|
|
t_span = torch.linspace(0, 1, n_timesteps + 1, device=mu.device, dtype=mu.dtype)
|
|
|
if self.t_scheduler == 'cosine':
|
|
|
t_span = 1 - torch.cos(t_span * 0.5 * torch.pi)
|
|
|
- return self.solve_euler(z, t_span=t_span, mu=mu, mask=mask, spks=spks, cond=cond), None
|
|
|
+ return self.solve_euler(z, t_span=t_span, mu=mu, mask=mask, spks=spks, cond=cond, streaming=streaming), None
|