|
|
@@ -50,6 +50,7 @@ class CosyVoiceModel:
|
|
|
self.llm_end_dict = {}
|
|
|
self.mel_overlap_dict = {}
|
|
|
self.hift_cache_dict = {}
|
|
|
+ self.speech_window = np.hamming(2 * self.source_cache_len)
|
|
|
|
|
|
def load(self, llm_model, flow_model, hift_model):
|
|
|
self.llm.load_state_dict(torch.load(llm_model, map_location=self.device))
|
|
|
@@ -114,13 +115,20 @@ class CosyVoiceModel:
|
|
|
self.mel_overlap_dict[uuid] = tts_mel[:, :, -self.mel_overlap_len:]
|
|
|
tts_mel = tts_mel[:, :, :-self.mel_overlap_len]
|
|
|
tts_speech, tts_source = self.hift.inference(mel=tts_mel, cache_source=hift_cache_source)
|
|
|
- self.hift_cache_dict[uuid] = {'source': tts_source[:, :, -self.source_cache_len:], 'mel': tts_mel[:, :, -self.mel_cache_len:]}
|
|
|
+ if self.hift_cache_dict[uuid] is not None:
|
|
|
+ tts_speech = fade_in_out(tts_speech, self.hift_cache_dict[uuid]['speech'], self.speech_window)
|
|
|
+ self.hift_cache_dict[uuid] = {
|
|
|
+ 'mel': tts_mel[:, :, -self.mel_cache_len:],
|
|
|
+ 'source': tts_source[:, :, -self.source_cache_len:],
|
|
|
+ 'speech': tts_speech[:, -self.source_cache_len:]}
|
|
|
tts_speech = tts_speech[:, :-self.source_cache_len]
|
|
|
else:
|
|
|
if speed != 1.0:
|
|
|
assert self.hift_cache_dict[uuid] is None, 'speed change only support non-stream inference mode'
|
|
|
tts_mel = F.interpolate(tts_mel, size=int(tts_mel.shape[2] / speed), mode='linear')
|
|
|
tts_speech, tts_source = self.hift.inference(mel=tts_mel, cache_source=hift_cache_source)
|
|
|
+ if self.hift_cache_dict[uuid] is not None:
|
|
|
+ tts_speech = fade_in_out(tts_speech, self.hift_cache_dict[uuid]['speech'], self.speech_window)
|
|
|
return tts_speech
|
|
|
|
|
|
def inference(self, text, flow_embedding, llm_embedding=torch.zeros(0, 192),
|