|
|
@@ -118,9 +118,15 @@ def main():
|
|
|
|
|
|
# load checkpoint
|
|
|
model = configs[args.model]
|
|
|
+ start_step, start_epoch = 0, -1
|
|
|
if args.checkpoint is not None:
|
|
|
if os.path.exists(args.checkpoint):
|
|
|
- model.load_state_dict(torch.load(args.checkpoint, map_location='cpu'), strict=False)
|
|
|
+ state_dict = torch.load(args.checkpoint, map_location='cpu')
|
|
|
+ model.load_state_dict(state_dict, strict=False)
|
|
|
+ if 'step' in state_dict:
|
|
|
+ start_step = state_dict['step']
|
|
|
+ if 'epoch' in state_dict:
|
|
|
+ start_epoch = state_dict['epoch']
|
|
|
else:
|
|
|
logging.warning('checkpoint {} do not exsist!'.format(args.checkpoint))
|
|
|
|
|
|
@@ -129,19 +135,25 @@ def main():
|
|
|
|
|
|
# Get optimizer & scheduler
|
|
|
model, optimizer, scheduler, optimizer_d, scheduler_d = init_optimizer_and_scheduler(args, configs, model, gan)
|
|
|
+ scheduler.set_step(start_step)
|
|
|
+ if scheduler_d is not None:
|
|
|
+ scheduler_d.set_step(start_step)
|
|
|
|
|
|
# Save init checkpoints
|
|
|
info_dict = deepcopy(configs['train_conf'])
|
|
|
+ info_dict['step'] = start_step
|
|
|
+ info_dict['epoch'] = start_epoch
|
|
|
save_model(model, 'init', info_dict)
|
|
|
|
|
|
# Get executor
|
|
|
executor = Executor(gan=gan)
|
|
|
+ executor.step = start_step
|
|
|
|
|
|
# Init scaler, used for pytorch amp mixed precision training
|
|
|
scaler = torch.cuda.amp.GradScaler() if args.use_amp else None
|
|
|
-
|
|
|
+ print('start step {} start epoch {}'.format(start_step, start_epoch))
|
|
|
# Start training loop
|
|
|
- for epoch in range(info_dict['max_epoch']):
|
|
|
+ for epoch in range(start_epoch + 1, info_dict['max_epoch']):
|
|
|
executor.epoch = epoch
|
|
|
train_dataset.set_epoch(epoch)
|
|
|
dist.barrier()
|