|
@@ -13,74 +13,39 @@
|
|
|
# See the License for the specific language governing permissions and
|
|
|
# limitations under the License.
|
|
|
import argparse
|
|
|
-import os
|
|
|
-from concurrent.futures import ThreadPoolExecutor
|
|
|
-
|
|
|
+from concurrent.futures import ThreadPoolExecutor, as_completed
|
|
|
import onnxruntime
|
|
|
import torch
|
|
|
import torchaudio
|
|
|
import torchaudio.compliance.kaldi as kaldi
|
|
|
from tqdm import tqdm
|
|
|
-from itertools import repeat
|
|
|
|
|
|
|
|
|
-def extract_embedding(utt: str, wav_file: str, ort_session: onnxruntime.InferenceSession):
|
|
|
- audio, sample_rate = torchaudio.load(wav_file)
|
|
|
+def single_job(utt):
|
|
|
+ audio, sample_rate = torchaudio.load(utt2wav[utt])
|
|
|
if sample_rate != 16000:
|
|
|
- audio = torchaudio.transforms.Resample(
|
|
|
- orig_freq=sample_rate, new_freq=16000
|
|
|
- )(audio)
|
|
|
- feat = kaldi.fbank(audio, num_mel_bins=80, dither=0, sample_frequency=16000)
|
|
|
+ audio = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000)(audio)
|
|
|
+ feat = kaldi.fbank(audio,
|
|
|
+ num_mel_bins=80,
|
|
|
+ dither=0,
|
|
|
+ sample_frequency=16000)
|
|
|
feat = feat - feat.mean(dim=0, keepdim=True)
|
|
|
embedding = ort_session.run(None, {ort_session.get_inputs()[0].name: feat.unsqueeze(dim=0).cpu().numpy()})[0].flatten().tolist()
|
|
|
- return (utt, embedding)
|
|
|
+ return utt, embedding
|
|
|
|
|
|
|
|
|
def main(args):
|
|
|
- utt2wav, utt2spk = {}, {}
|
|
|
- with open("{}/wav.scp".format(args.dir)) as f:
|
|
|
- for l in f:
|
|
|
- l = l.replace("\n", "").split()
|
|
|
- utt2wav[l[0]] = l[1]
|
|
|
- with open("{}/utt2spk".format(args.dir)) as f:
|
|
|
- for l in f:
|
|
|
- l = l.replace("\n", "").split()
|
|
|
- utt2spk[l[0]] = l[1]
|
|
|
-
|
|
|
- assert os.path.exists(args.onnx_path), "onnx_path not exists"
|
|
|
-
|
|
|
- option = onnxruntime.SessionOptions()
|
|
|
- option.graph_optimization_level = (
|
|
|
- onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL
|
|
|
- )
|
|
|
- option.intra_op_num_threads = 1
|
|
|
- providers = ["CPUExecutionProvider"]
|
|
|
- ort_session = onnxruntime.InferenceSession(
|
|
|
- args.onnx_path, sess_options=option, providers=providers
|
|
|
- )
|
|
|
-
|
|
|
- all_utt = utt2wav.keys()
|
|
|
-
|
|
|
- with ThreadPoolExecutor(max_workers=args.num_thread) as executor:
|
|
|
- results = list(
|
|
|
- tqdm(
|
|
|
- executor.map(extract_embedding, all_utt, [utt2wav[utt] for utt in all_utt], repeat(ort_session)),
|
|
|
- total=len(utt2wav),
|
|
|
- desc="Process data: "
|
|
|
- )
|
|
|
- )
|
|
|
-
|
|
|
+ all_task = [executor.submit(single_job, utt) for utt in utt2wav.keys()]
|
|
|
utt2embedding, spk2embedding = {}, {}
|
|
|
- for utt, embedding in results:
|
|
|
+ for future in tqdm(as_completed(all_task)):
|
|
|
+ utt, embedding = future.result()
|
|
|
utt2embedding[utt] = embedding
|
|
|
spk = utt2spk[utt]
|
|
|
if spk not in spk2embedding:
|
|
|
spk2embedding[spk] = []
|
|
|
spk2embedding[spk].append(embedding)
|
|
|
-
|
|
|
for k, v in spk2embedding.items():
|
|
|
spk2embedding[k] = torch.tensor(v).mean(dim=0).tolist()
|
|
|
-
|
|
|
torch.save(utt2embedding, "{}/utt2embedding.pt".format(args.dir))
|
|
|
torch.save(spk2embedding, "{}/spk2embedding.pt".format(args.dir))
|
|
|
|
|
@@ -91,4 +56,22 @@ if __name__ == "__main__":
|
|
|
parser.add_argument("--onnx_path", type=str)
|
|
|
parser.add_argument("--num_thread", type=int, default=8)
|
|
|
args = parser.parse_args()
|
|
|
+
|
|
|
+ utt2wav, utt2spk = {}, {}
|
|
|
+ with open('{}/wav.scp'.format(args.dir)) as f:
|
|
|
+ for l in f:
|
|
|
+ l = l.replace('\n', '').split()
|
|
|
+ utt2wav[l[0]] = l[1]
|
|
|
+ with open('{}/utt2spk'.format(args.dir)) as f:
|
|
|
+ for l in f:
|
|
|
+ l = l.replace('\n', '').split()
|
|
|
+ utt2spk[l[0]] = l[1]
|
|
|
+
|
|
|
+ option = onnxruntime.SessionOptions()
|
|
|
+ option.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL
|
|
|
+ option.intra_op_num_threads = 1
|
|
|
+ providers = ["CPUExecutionProvider"]
|
|
|
+ ort_session = onnxruntime.InferenceSession(args.onnx_path, sess_options=option, providers=providers)
|
|
|
+ executor = ThreadPoolExecutor(max_workers=args.num_thread)
|
|
|
+
|
|
|
main(args)
|