|
|
@@ -31,8 +31,8 @@ class CosyVoiceModel:
|
|
|
self.llm = llm
|
|
|
self.flow = flow
|
|
|
self.hift = hift
|
|
|
- self.token_min_hop_len = 100
|
|
|
- self.token_max_hop_len = 200
|
|
|
+ self.token_min_hop_len = 2 * self.flow.input_frame_rate
|
|
|
+ self.token_max_hop_len = 4 * self.flow.input_frame_rate
|
|
|
self.token_overlap_len = 20
|
|
|
# mel fade in out
|
|
|
self.mel_overlap_len = int(self.token_overlap_len / self.flow.input_frame_rate * 22050 / 256)
|
|
|
@@ -87,10 +87,7 @@ class CosyVoiceModel:
|
|
|
prompt_text_len=torch.tensor([prompt_text.shape[1]], dtype=torch.int32).to(self.device),
|
|
|
prompt_speech_token=llm_prompt_speech_token.to(self.device),
|
|
|
prompt_speech_token_len=torch.tensor([llm_prompt_speech_token.shape[1]], dtype=torch.int32).to(self.device),
|
|
|
- embedding=llm_embedding.to(self.device).half(),
|
|
|
- sampling=25,
|
|
|
- max_token_text_ratio=30,
|
|
|
- min_token_text_ratio=3):
|
|
|
+ embedding=llm_embedding.to(self.device).half()):
|
|
|
self.tts_speech_token_dict[uuid].append(i)
|
|
|
self.llm_end_dict[uuid] = True
|
|
|
|