#!/bin/bash # Copyright (c) 2025 NVIDIA (authors: Yuekai Zhang) export CUDA_VISIBLE_DEVICES=0 cosyvoice_path=/workspace/CosyVoice stepaudio2_path=/workspace/Step-Audio2 export PYTHONPATH=${stepaudio2_path}:$PYTHONPATH export PYTHONPATH=${cosyvoice_path}:$PYTHONPATH export PYTHONPATH=${cosyvoice_path}/third_party/Matcha-TTS:$PYTHONPATH stage=$1 stop_stage=$2 huggingface_model_local_dir=./cosyvoice2_llm model_scope_model_local_dir=./CosyVoice2-0.5B step_audio_model_dir=./Step-Audio-2-mini trt_dtype=bfloat16 trt_weights_dir=./trt_weights_${trt_dtype} trt_engines_dir=./trt_engines_${trt_dtype} model_repo=./model_repo_cosyvoice2_dit bls_instance_num=10 if [ $stage -le -1 ] && [ $stop_stage -ge -1 ]; then echo "Cloning Step-Audio2-mini" git clone https://github.com/yuekaizhang/Step-Audio2.git -b trt $stepaudio2_path echo "Cloning CosyVoice" git clone --recursive https://github.com/FunAudioLLM/CosyVoice.git $cosyvoice_path cd $cosyvoice_path git submodule update --init --recursive cd runtime/triton_trtllm fi if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then echo "Downloading CosyVoice2-0.5B" # see https://github.com/nvidia-china-sae/mair-hub/blob/main/rl-tutorial/cosyvoice_llm/pretrained_to_huggingface.py huggingface-cli download --local-dir $huggingface_model_local_dir yuekai/cosyvoice2_llm modelscope download --model iic/CosyVoice2-0.5B --local_dir $model_scope_model_local_dir echo "Step-Audio2-mini" huggingface-cli download --local-dir $step_audio_model_dir stepfun-ai/Step-Audio-2-mini cd $step_audio_model_dir/token2wav wget https://huggingface.co/yuekai/cosyvoice2_dit_flow_matching_onnx/resolve/main/flow.decoder.estimator.fp32.dynamic_batch.onnx -O flow.decoder.estimator.fp32.dynamic_batch.onnx wget https://huggingface.co/yuekai/cosyvoice2_dit_flow_matching_onnx/resolve/main/flow.decoder.estimator.chunk.fp32.dynamic_batch.simplify.onnx -O flow.decoder.estimator.chunk.fp32.dynamic_batch.simplify.onnx cd - fi if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then echo "Converting checkpoint to TensorRT weights" python3 scripts/convert_checkpoint.py --model_dir $huggingface_model_local_dir \ --output_dir $trt_weights_dir \ --dtype $trt_dtype || exit 1 echo "Building TensorRT engines" trtllm-build --checkpoint_dir $trt_weights_dir \ --output_dir $trt_engines_dir \ --max_batch_size 64 \ --max_num_tokens 32768 \ --gemm_plugin $trt_dtype || exit 1 echo "Testing TensorRT engines" python3 ./scripts/test_llm.py --input_text "你好,请问你叫什么?" \ --tokenizer_dir $huggingface_model_local_dir \ --top_k 50 --top_p 0.95 --temperature 0.8 \ --engine_dir=$trt_engines_dir || exit 1 fi if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then echo "Creating model repository async mode" rm -rf $model_repo mkdir -p $model_repo cosyvoice2_dir="cosyvoice2_dit" token2wav_dir="token2wav_dit" cp -r ./model_repo/${cosyvoice2_dir} $model_repo cp -r ./model_repo/${token2wav_dir} $model_repo cp -r ./model_repo/audio_tokenizer $model_repo cp -r ./model_repo/speaker_embedding $model_repo ENGINE_PATH=$trt_engines_dir MAX_QUEUE_DELAY_MICROSECONDS=0 MODEL_DIR=$model_scope_model_local_dir LLM_TOKENIZER_DIR=$huggingface_model_local_dir BLS_INSTANCE_NUM=$bls_instance_num TRITON_MAX_BATCH_SIZE=1 DECOUPLED_MODE=True # Only streaming TTS mode is supported using Nvidia Triton for now STEP_AUDIO_MODEL_DIR=$step_audio_model_dir/token2wav python3 scripts/fill_template.py -i ${model_repo}/${token2wav_dir}/config.pbtxt model_dir:${STEP_AUDIO_MODEL_DIR},triton_max_batch_size:${TRITON_MAX_BATCH_SIZE},max_queue_delay_microseconds:${MAX_QUEUE_DELAY_MICROSECONDS} python3 scripts/fill_template.py -i ${model_repo}/${cosyvoice2_dir}/config.pbtxt model_dir:${MODEL_DIR},bls_instance_num:${BLS_INSTANCE_NUM},llm_tokenizer_dir:${LLM_TOKENIZER_DIR},triton_max_batch_size:${TRITON_MAX_BATCH_SIZE},decoupled_mode:${DECOUPLED_MODE},max_queue_delay_microseconds:${MAX_QUEUE_DELAY_MICROSECONDS} python3 scripts/fill_template.py -i ${model_repo}/audio_tokenizer/config.pbtxt model_dir:${MODEL_DIR},triton_max_batch_size:${TRITON_MAX_BATCH_SIZE},max_queue_delay_microseconds:${MAX_QUEUE_DELAY_MICROSECONDS} python3 scripts/fill_template.py -i ${model_repo}/speaker_embedding/config.pbtxt model_dir:${MODEL_DIR},triton_max_batch_size:${TRITON_MAX_BATCH_SIZE},max_queue_delay_microseconds:${MAX_QUEUE_DELAY_MICROSECONDS} fi if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then echo "Starting Token2wav Triton server and Cosyvoice2 llm using trtllm-serve" mpirun -np 1 --allow-run-as-root --oversubscribe trtllm-serve serve --tokenizer $huggingface_model_local_dir $trt_engines_dir --max_batch_size 64 --kv_cache_free_gpu_memory_fraction 0.4 & tritonserver --model-repository $model_repo --http-port 18000 & wait # Test using curl # curl http://localhost:8000/v1/chat/completions \ # -H "Content-Type: application/json" \ # -d '{ # "model": "", # "messages":[{"role": "user", "content": "Where is New York?"}, # {"role": "assistant", "content": "<|s_1708|><|s_2050|><|s_2159|>"}], # "max_tokens": 512, # "temperature": 0.8, # "top_p": 0.95, # "top_k": 50, # "stop": ["<|eos1|>"], # "repetition_penalty": 1.2, # "stream": false # }' fi if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then echo "Running benchmark client" num_task=4 mode=streaming BLS_INSTANCE_NUM=$bls_instance_num python3 client_grpc.py \ --server-addr localhost \ --server-port 8001 \ --model-name cosyvoice2_dit \ --num-tasks $num_task \ --mode $mode \ --huggingface-dataset yuekai/seed_tts_cosy2 \ --log-dir ./log_single_gpu_concurrent_tasks_${num_task}_${mode}_bls_${BLS_INSTANCE_NUM} fi if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then echo "stage 5: Offline TTS (Cosyvoice2 LLM + Step-Audio2-mini DiT Token2Wav) inference using a single python script" datasets=(wenetspeech4tts) # wenetspeech4tts, test_zh, zero_shot_zh backend=trtllm # hf, trtllm, vllm, trtllm-serve batch_sizes=(16) token2wav_batch_size=1 for batch_size in ${batch_sizes[@]}; do for dataset in ${datasets[@]}; do output_dir=./${dataset}_${backend}_llm_batch_size_${batch_size}_token2wav_batch_size_${token2wav_batch_size} CUDA_VISIBLE_DEVICES=1 \ python3 offline_inference.py \ --output-dir $output_dir \ --llm-model-name-or-path $huggingface_model_local_dir \ --token2wav-path $step_audio_model_dir/token2wav \ --backend $backend \ --batch-size $batch_size --token2wav-batch-size $token2wav_batch_size \ --engine-dir $trt_engines_dir \ --split-name ${dataset} || exit 1 done done fi if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then echo "Running Step-Audio2-mini DiT Token2Wav inference using a single python script" export CUDA_VISIBLE_DEVICES=1 # Note: Using pre-computed cosyvoice2 tokens python3 streaming_inference.py --enable-trt --strategy equal # equal, exponential # Offline Token2wav inference python3 token2wav_dit.py --enable-trt fi if [ $stage -le 7 ] && [ $stop_stage -ge 7 ]; then echo "Disaggregated Server: LLM and Token2wav on different GPUs" echo "Starting LLM server on GPU 0" export CUDA_VISIBLE_DEVICES=0 mpirun -np 1 --allow-run-as-root --oversubscribe trtllm-serve serve --tokenizer $huggingface_model_local_dir $trt_engines_dir --max_batch_size 64 --kv_cache_free_gpu_memory_fraction 0.4 & echo "Starting Token2wav server on GPUs 1-3" Token2wav_num_gpus=3 http_port=17000 grpc_port=18000 metrics_port=16000 for i in $(seq 0 $(($Token2wav_num_gpus - 1))); do echo "Starting server on GPU $i" http_port=$((http_port + 1)) grpc_port=$((grpc_port + 1)) metrics_port=$((metrics_port + 1)) # Two instances of Token2wav server on the same GPU CUDA_VISIBLE_DEVICES=$(($i + 1)) tritonserver --model-repository $model_repo --http-port $http_port --grpc-port $grpc_port --metrics-port $metrics_port & http_port=$((http_port + 1)) grpc_port=$((grpc_port + 1)) metrics_port=$((metrics_port + 1)) CUDA_VISIBLE_DEVICES=$(($i + 1)) tritonserver --model-repository $model_repo --http-port $http_port --grpc-port $grpc_port --metrics-port $metrics_port & done wait fi if [ $stage -le 8 ] && [ $stop_stage -ge 8 ]; then echo "Running benchmark client for Disaggregated Server" per_gpu_instances=2 mode=streaming BLS_INSTANCE_NUM=$bls_instance_num Token2wav_num_gpus=(1 2 3) concurrent_tasks=(1 2 3 4 5 6) for n_gpu in ${Token2wav_num_gpus[@]}; do echo "Test 1 GPU for LLM server and $n_gpu GPUs for Token2wav servers" for concurrent_task in ${concurrent_tasks[@]}; do num_instances=$((per_gpu_instances * n_gpu)) for i in $(seq 1 $num_instances); do port=$(($i + 18000)) python3 client_grpc.py \ --server-addr localhost \ --server-port $port \ --model-name cosyvoice2_dit \ --num-tasks $concurrent_task \ --mode $mode \ --huggingface-dataset yuekai/seed_tts_cosy2 \ --log-dir ./log_disagg_concurrent_tasks_${concurrent_task}_per_instance_total_token2wav_instances_${num_instances}_port_${port} & done wait done done fi