# SPDX-FileCopyrightText: Copyright (c) 2025, NVIDIA CORPORATION. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ python3 hf2pretrained.py --hf-cosyvoice2-llm-path /workspace/rl-exp/checkpoint-400 --output-path /workspace/CosyVoice2-0.5B/llm-new.pt """ from argparse import ArgumentParser import torch from safetensors import safe_open from transformers import AutoTokenizer def get_args(): parser = ArgumentParser() parser.add_argument( "--hf-cosyvoice2-llm-path", type=str, default=None, help="The RL trained CosyVoice2 model path in HuggingFace format", ) parser.add_argument( "--output-path", type=str, default="./llm.pt", help="The path to save the llm.pt", ) args = parser.parse_args() return args if __name__ == "__main__": args = get_args() tokenizer = AutoTokenizer.from_pretrained(args.hf_cosyvoice2_llm_path) speech_start_idx = tokenizer.convert_tokens_to_ids("<|s_0|>") cosyvoice2_token_size = 6561 + 3 llm_embedding_vocab_size = 2 hf_tensors = {} with safe_open(f"{args.hf_cosyvoice2_llm_path}/model.safetensors", framework="pt", device="cpu") as f: for k in f.keys(): if k.startswith("lm_head.bias"): # RL trained model disable bias for lm_head continue new_k = "llm.model." + k hf_tensors[new_k] = f.get_tensor(k) if k.startswith("lm_head"): hf_tensors["llm_decoder.weight"] = f.get_tensor(k)[speech_start_idx:speech_start_idx + cosyvoice2_token_size] hf_tensors["llm_decoder.bias"] = torch.zeros_like(hf_tensors["llm_decoder.weight"][:, 0]) if k.startswith("model.embed_tokens"): hf_tensors["speech_embedding.weight"] = f.get_tensor(k)[speech_start_idx:speech_start_idx + cosyvoice2_token_size] hf_tensors["llm_embedding.weight"] = f.get_tensor(k)[speech_start_idx + cosyvoice2_token_size:speech_start_idx + cosyvoice2_token_size + llm_embedding_vocab_size] # use tie_word_embeddings=True hf_tensors["llm.model.model.embed_tokens.weight"] = hf_tensors["llm.model.model.embed_tokens.weight"][:151936] hf_tensors["llm.model.lm_head.weight"] = hf_tensors["llm.model.model.embed_tokens.weight"] torch.save(hf_tensors, args.output_path)