| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206 |
- # Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Zhihao Du)
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from typing import Dict, Optional, Union
- import torch
- from torch import nn
- import torch.nn.functional as F
- from torch.nn.utils.rnn import pad_sequence, unpad_sequence
- from cosyvoice.utils.common import IGNORE_ID
- from cosyvoice.transformer.label_smoothing_loss import LabelSmoothingLoss
- from cosyvoice.utils.common import th_accuracy
- class TransformerLM(torch.nn.Module):
- def __init__(
- self,
- text_encoder_input_size: int,
- llm_input_size: int,
- llm_output_size: int,
- text_token_size: int,
- speech_token_size: int,
- text_encoder: torch.nn.Module,
- llm: torch.nn.Module,
- length_normalized_loss: bool = True,
- lsm_weight: float = 0.0,
- spk_embed_dim: int = 192,
- ):
- super().__init__()
- self.llm_input_size = llm_input_size
- self.speech_token_size = speech_token_size
- # 1. build text token inputs related modules
- self.text_embedding = torch.nn.Embedding(text_token_size, text_encoder_input_size)
- self.text_encoder = text_encoder
- self.text_encoder_affine_layer = nn.Linear(
- self.text_encoder.output_size(),
- llm_input_size
- )
- # 2. build speech token language model related modules
- self.sos_eos = 0
- self.task_id = 1
- self.llm_embedding = torch.nn.Embedding(2, llm_input_size)
- self.llm = llm
- self.llm_decoder = nn.Linear(llm_output_size, speech_token_size + 1)
- self.criterion_ce = LabelSmoothingLoss(
- size=speech_token_size + 1,
- padding_idx=IGNORE_ID,
- smoothing=lsm_weight,
- normalize_length=length_normalized_loss,
- )
- # 3. [Optional] build speech token related modules
- self.speech_embedding = torch.nn.Embedding(speech_token_size, llm_input_size)
- self.spk_embed_affine_layer = torch.nn.Linear(spk_embed_dim, llm_input_size)
- def encode(
- self,
- text: torch.Tensor,
- text_lengths: torch.Tensor,
- ):
- encoder_out, encoder_mask = self.text_encoder(text, text_lengths, decoding_chunk_size=1, num_decoding_left_chunks=-1)
- encoder_out_lens = encoder_mask.squeeze(1).sum(1)
- encoder_out = self.text_encoder_affine_layer(encoder_out)
- return encoder_out, encoder_out_lens
- def pad_unpad_sequence(self, sos_eos_emb, embedding, text_token, text_token_len, task_id_emb, speech_token, speech_token_len):
- text_token = unpad_sequence(text_token, text_token_len.cpu(), batch_first=True)
- speech_token = unpad_sequence(speech_token, speech_token_len.cpu(), batch_first=True)
- lm_input = [torch.concat([sos_eos_emb.squeeze(dim=0), embedding[i], text_token[i], task_id_emb.squeeze(dim=0), speech_token[i]], dim=0) for i in range(len(text_token))]
- lm_input_len = torch.tensor([i.size(0) for i in lm_input], dtype=torch.int32)
- lm_input = pad_sequence(lm_input, batch_first=True, padding_value=IGNORE_ID)
- return lm_input, lm_input_len
- def forward(
- self,
- batch: dict,
- device: torch.device,
- ) -> Dict[str, Optional[torch.Tensor]]:
- """
- Args:
- text: (B, L, D)
- text_lengths: (B,)
- audio: (B, T, N) or (B, T)
- audio_lengths: (B,)
- """
- text_token = batch['text_token'].to(device)
- text_token_len = batch['text_token_len'].to(device)
- speech_token = batch['speech_token'].to(device)
- speech_token_len = batch['speech_token_len'].to(device)
- embedding = batch['utt_embedding'].to(device)
- # 1. prepare llm_target
- lm_target = [torch.tensor([IGNORE_ID] * (2 + text_token_len[i]) + speech_token[i, :speech_token_len[i]].tolist() + [self.speech_token_size]) for i in range(text_token.size(0))]
- lm_target = pad_sequence(lm_target, batch_first=True, padding_value=IGNORE_ID).to(device)
- # 1. encode text_token
- text_token = self.text_embedding(text_token)
- text_token, text_token_len = self.encode(text_token, text_token_len)
- # 2. embedding projection
- embedding = F.normalize(embedding, dim=1)
- embedding = self.spk_embed_affine_layer(embedding)
- embedding = embedding.unsqueeze(1)
- # 3. eos and task_id
- sos_eos_emb = self.llm_embedding.weight[self.sos_eos].reshape(1, 1, -1)
- task_id_emb = self.llm_embedding.weight[self.task_id].reshape(1, 1, -1)
- # 4. encode speech_token
- speech_token = self.speech_embedding(speech_token)
- # 5. unpad and pad
- lm_input, lm_input_len = self.pad_unpad_sequence(sos_eos_emb, embedding, text_token, text_token_len, task_id_emb, speech_token, speech_token_len)
- # 6. run lm forward
- lm_output, lm_output_mask = self.llm(lm_input, lm_input_len.to(device))
- logits = self.llm_decoder(lm_output)
- loss = self.criterion_ce(logits, lm_target)
- acc = th_accuracy(logits.view(-1, self.speech_token_size + 1), lm_target, ignore_label=IGNORE_ID)
- return {'loss': loss, 'acc': acc}
- def sampling_ids(
- self,
- weighted_scores: torch.Tensor,
- sampling: Union[bool, int, float] = True,
- beam_size: int = 1,
- ignore_eos: bool = True,
- ):
- while True:
- prob, indices = weighted_scores.softmax(dim=-1).topk(sampling)
- top_ids = prob.multinomial(beam_size, replacement=True)
- top_ids = indices[top_ids]
- if (not ignore_eos) or (self.speech_token_size not in top_ids):
- break
- return top_ids
- @torch.inference_mode()
- def inference(
- self,
- text: torch.Tensor,
- text_len: torch.Tensor,
- prompt_text: torch.Tensor,
- prompt_text_len: torch.Tensor,
- prompt_speech_token: torch.Tensor,
- prompt_speech_token_len: torch.Tensor,
- embedding: torch.Tensor,
- beam_size: int = 1,
- sampling: int = 25,
- max_token_text_ratio: float = 20,
- min_token_text_ratio: float = 2,
- ) -> torch.Tensor:
- device = text.device
- text = torch.concat([prompt_text, text], dim=1)
- text_len += prompt_text_len
- text = self.text_embedding(text)
- # 1. encode text
- text, text_len = self.encode(text, text_len)
- # 2. encode embedding
- if embedding.shape[0] != 0:
- embedding = F.normalize(embedding, dim=1)
- embedding = self.spk_embed_affine_layer(embedding)
- embedding = embedding.unsqueeze(dim=1)
- else:
- embedding = torch.zeros(1, 0, self.llm_input_size).to(device)
- # 3. concat llm_input
- sos_eos_emb = self.llm_embedding.weight[self.sos_eos].reshape(1, 1, -1)
- task_id_emb = self.llm_embedding.weight[self.task_id].reshape(1, 1, -1)
- if prompt_speech_token_len != 0:
- prompt_speech_token_emb = self.speech_embedding(prompt_speech_token)
- else:
- prompt_speech_token_emb = torch.zeros(1, 0, self.llm_input_size).to(device)
- lm_input = torch.concat([sos_eos_emb, embedding, text, task_id_emb, prompt_speech_token_emb], dim=1)
- # 4. cal min/max_length
- min_len = int((text_len - prompt_text_len) * min_token_text_ratio)
- max_len = int((text_len - prompt_text_len) * max_token_text_ratio)
- # 5. step by step decode
- out_tokens = []
- offset = 0
- att_cache, cnn_cache = torch.zeros((0, 0, 0, 0), device=lm_input.device), torch.zeros((0, 0, 0, 0), device=lm_input.device)
- for i in range(max_len):
- y_pred, att_cache, cnn_cache = self.llm.forward_chunk(lm_input, offset=0, required_cache_size=-1, att_cache=att_cache, cnn_cache=cnn_cache,
- att_mask=torch.tril(torch.ones((1, lm_input.shape[1], lm_input.shape[1]), device=lm_input.device)).to(torch.bool))
- logp = self.llm_decoder(y_pred[:, -1]).log_softmax(dim=-1)
- top_ids = self.sampling_ids(logp.squeeze(dim=0), sampling, beam_size, ignore_eos=True if i < min_len else False).item()
- if top_ids == self.speech_token_size:
- break
- out_tokens.append(top_ids)
- offset += lm_input.size(1)
- lm_input = self.speech_embedding.weight[top_ids].reshape(1, 1, -1)
- return torch.tensor([out_tokens], dtype=torch.int64, device=device)
|