| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472 |
- # Copyright (c) 2021 Mobvoi Inc (Binbin Zhang, Di Wu)
- # 2022 Xingchen Song (sxc19@mails.tsinghua.edu.cn)
- # 2024 Alibaba Inc (Xiang Lyu)
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # Modified from ESPnet(https://github.com/espnet/espnet)
- """Encoder definition."""
- from typing import Tuple
- import torch
- import torch.utils.checkpoint as ckpt
- from cosyvoice.transformer.convolution import ConvolutionModule
- from cosyvoice.transformer.encoder_layer import TransformerEncoderLayer
- from cosyvoice.transformer.encoder_layer import ConformerEncoderLayer
- from cosyvoice.transformer.positionwise_feed_forward import PositionwiseFeedForward
- from cosyvoice.utils.class_utils import (
- COSYVOICE_EMB_CLASSES,
- COSYVOICE_SUBSAMPLE_CLASSES,
- COSYVOICE_ATTENTION_CLASSES,
- COSYVOICE_ACTIVATION_CLASSES,
- )
- from cosyvoice.utils.mask import make_pad_mask
- from cosyvoice.utils.mask import add_optional_chunk_mask
- class BaseEncoder(torch.nn.Module):
- def __init__(
- self,
- input_size: int,
- output_size: int = 256,
- attention_heads: int = 4,
- linear_units: int = 2048,
- num_blocks: int = 6,
- dropout_rate: float = 0.1,
- positional_dropout_rate: float = 0.1,
- attention_dropout_rate: float = 0.0,
- input_layer: str = "conv2d",
- pos_enc_layer_type: str = "abs_pos",
- normalize_before: bool = True,
- static_chunk_size: int = 0,
- use_dynamic_chunk: bool = False,
- global_cmvn: torch.nn.Module = None,
- use_dynamic_left_chunk: bool = False,
- gradient_checkpointing: bool = False,
- ):
- """
- Args:
- input_size (int): input dim
- output_size (int): dimension of attention
- attention_heads (int): the number of heads of multi head attention
- linear_units (int): the hidden units number of position-wise feed
- forward
- num_blocks (int): the number of decoder blocks
- dropout_rate (float): dropout rate
- attention_dropout_rate (float): dropout rate in attention
- positional_dropout_rate (float): dropout rate after adding
- positional encoding
- input_layer (str): input layer type.
- optional [linear, conv2d, conv2d6, conv2d8]
- pos_enc_layer_type (str): Encoder positional encoding layer type.
- opitonal [abs_pos, scaled_abs_pos, rel_pos, no_pos]
- normalize_before (bool):
- True: use layer_norm before each sub-block of a layer.
- False: use layer_norm after each sub-block of a layer.
- static_chunk_size (int): chunk size for static chunk training and
- decoding
- use_dynamic_chunk (bool): whether use dynamic chunk size for
- training or not, You can only use fixed chunk(chunk_size > 0)
- or dyanmic chunk size(use_dynamic_chunk = True)
- global_cmvn (Optional[torch.nn.Module]): Optional GlobalCMVN module
- use_dynamic_left_chunk (bool): whether use dynamic left chunk in
- dynamic chunk training
- key_bias: whether use bias in attention.linear_k, False for whisper models.
- gradient_checkpointing: rerunning a forward-pass segment for each
- checkpointed segment during backward.
- """
- super().__init__()
- self._output_size = output_size
- self.global_cmvn = global_cmvn
- self.embed = COSYVOICE_SUBSAMPLE_CLASSES[input_layer](
- input_size,
- output_size,
- dropout_rate,
- COSYVOICE_EMB_CLASSES[pos_enc_layer_type](output_size,
- positional_dropout_rate),
- )
- self.normalize_before = normalize_before
- self.after_norm = torch.nn.LayerNorm(output_size, eps=1e-5)
- self.static_chunk_size = static_chunk_size
- self.use_dynamic_chunk = use_dynamic_chunk
- self.use_dynamic_left_chunk = use_dynamic_left_chunk
- self.gradient_checkpointing = gradient_checkpointing
- def output_size(self) -> int:
- return self._output_size
- def forward(
- self,
- xs: torch.Tensor,
- xs_lens: torch.Tensor,
- decoding_chunk_size: int = 0,
- num_decoding_left_chunks: int = -1,
- ) -> Tuple[torch.Tensor, torch.Tensor]:
- """Embed positions in tensor.
- Args:
- xs: padded input tensor (B, T, D)
- xs_lens: input length (B)
- decoding_chunk_size: decoding chunk size for dynamic chunk
- 0: default for training, use random dynamic chunk.
- <0: for decoding, use full chunk.
- >0: for decoding, use fixed chunk size as set.
- num_decoding_left_chunks: number of left chunks, this is for decoding,
- the chunk size is decoding_chunk_size.
- >=0: use num_decoding_left_chunks
- <0: use all left chunks
- Returns:
- encoder output tensor xs, and subsampled masks
- xs: padded output tensor (B, T' ~= T/subsample_rate, D)
- masks: torch.Tensor batch padding mask after subsample
- (B, 1, T' ~= T/subsample_rate)
- NOTE(xcsong):
- We pass the `__call__` method of the modules instead of `forward` to the
- checkpointing API because `__call__` attaches all the hooks of the module.
- https://discuss.pytorch.org/t/any-different-between-model-input-and-model-forward-input/3690/2
- """
- T = xs.size(1)
- masks = ~make_pad_mask(xs_lens, T).unsqueeze(1) # (B, 1, T)
- if self.global_cmvn is not None:
- xs = self.global_cmvn(xs)
- xs, pos_emb, masks = self.embed(xs, masks)
- mask_pad = masks # (B, 1, T/subsample_rate)
- chunk_masks = add_optional_chunk_mask(xs, masks,
- self.use_dynamic_chunk,
- self.use_dynamic_left_chunk,
- decoding_chunk_size,
- self.static_chunk_size,
- num_decoding_left_chunks)
- if self.gradient_checkpointing and self.training:
- xs = self.forward_layers_checkpointed(xs, chunk_masks, pos_emb,
- mask_pad)
- else:
- xs = self.forward_layers(xs, chunk_masks, pos_emb, mask_pad)
- if self.normalize_before:
- xs = self.after_norm(xs)
- # Here we assume the mask is not changed in encoder layers, so just
- # return the masks before encoder layers, and the masks will be used
- # for cross attention with decoder later
- return xs, masks
- def forward_layers(self, xs: torch.Tensor, chunk_masks: torch.Tensor,
- pos_emb: torch.Tensor,
- mask_pad: torch.Tensor) -> torch.Tensor:
- for layer in self.encoders:
- xs, chunk_masks, _, _ = layer(xs, chunk_masks, pos_emb, mask_pad)
- return xs
- @torch.jit.ignore(drop=True)
- def forward_layers_checkpointed(self, xs: torch.Tensor,
- chunk_masks: torch.Tensor,
- pos_emb: torch.Tensor,
- mask_pad: torch.Tensor) -> torch.Tensor:
- for layer in self.encoders:
- xs, chunk_masks, _, _ = ckpt.checkpoint(layer.__call__, xs,
- chunk_masks, pos_emb,
- mask_pad)
- return xs
- def forward_chunk(
- self,
- xs: torch.Tensor,
- offset: int,
- required_cache_size: int,
- att_cache: torch.Tensor = torch.zeros(0, 0, 0, 0),
- cnn_cache: torch.Tensor = torch.zeros(0, 0, 0, 0),
- att_mask: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool),
- ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
- """ Forward just one chunk
- Args:
- xs (torch.Tensor): chunk input, with shape (b=1, time, mel-dim),
- where `time == (chunk_size - 1) * subsample_rate + \
- subsample.right_context + 1`
- offset (int): current offset in encoder output time stamp
- required_cache_size (int): cache size required for next chunk
- compuation
- >=0: actual cache size
- <0: means all history cache is required
- att_cache (torch.Tensor): cache tensor for KEY & VALUE in
- transformer/conformer attention, with shape
- (elayers, head, cache_t1, d_k * 2), where
- `head * d_k == hidden-dim` and
- `cache_t1 == chunk_size * num_decoding_left_chunks`.
- cnn_cache (torch.Tensor): cache tensor for cnn_module in conformer,
- (elayers, b=1, hidden-dim, cache_t2), where
- `cache_t2 == cnn.lorder - 1`
- Returns:
- torch.Tensor: output of current input xs,
- with shape (b=1, chunk_size, hidden-dim).
- torch.Tensor: new attention cache required for next chunk, with
- dynamic shape (elayers, head, ?, d_k * 2)
- depending on required_cache_size.
- torch.Tensor: new conformer cnn cache required for next chunk, with
- same shape as the original cnn_cache.
- """
- assert xs.size(0) == 1
- # tmp_masks is just for interface compatibility
- tmp_masks = torch.ones(1,
- xs.size(1),
- device=xs.device,
- dtype=torch.bool)
- tmp_masks = tmp_masks.unsqueeze(1)
- if self.global_cmvn is not None:
- xs = self.global_cmvn(xs)
- # NOTE(xcsong): Before embed, shape(xs) is (b=1, time, mel-dim)
- xs, pos_emb, _ = self.embed(xs, tmp_masks, offset)
- # NOTE(xcsong): After embed, shape(xs) is (b=1, chunk_size, hidden-dim)
- elayers, cache_t1 = att_cache.size(0), att_cache.size(2)
- chunk_size = xs.size(1)
- attention_key_size = cache_t1 + chunk_size
- pos_emb = self.embed.position_encoding(offset=offset - cache_t1,
- size=attention_key_size)
- if required_cache_size < 0:
- next_cache_start = 0
- elif required_cache_size == 0:
- next_cache_start = attention_key_size
- else:
- next_cache_start = max(attention_key_size - required_cache_size, 0)
- r_att_cache = []
- r_cnn_cache = []
- for i, layer in enumerate(self.encoders):
- # NOTE(xcsong): Before layer.forward
- # shape(att_cache[i:i + 1]) is (1, head, cache_t1, d_k * 2),
- # shape(cnn_cache[i]) is (b=1, hidden-dim, cache_t2)
- xs, _, new_att_cache, new_cnn_cache = layer(
- xs,
- att_mask,
- pos_emb,
- att_cache=att_cache[i:i + 1] if elayers > 0 else att_cache,
- cnn_cache=cnn_cache[i] if cnn_cache.size(0) > 0 else cnn_cache)
- # NOTE(xcsong): After layer.forward
- # shape(new_att_cache) is (1, head, attention_key_size, d_k * 2),
- # shape(new_cnn_cache) is (b=1, hidden-dim, cache_t2)
- r_att_cache.append(new_att_cache[:, :, next_cache_start:, :])
- r_cnn_cache.append(new_cnn_cache.unsqueeze(0))
- if self.normalize_before:
- xs = self.after_norm(xs)
- # NOTE(xcsong): shape(r_att_cache) is (elayers, head, ?, d_k * 2),
- # ? may be larger than cache_t1, it depends on required_cache_size
- r_att_cache = torch.cat(r_att_cache, dim=0)
- # NOTE(xcsong): shape(r_cnn_cache) is (e, b=1, hidden-dim, cache_t2)
- r_cnn_cache = torch.cat(r_cnn_cache, dim=0)
- return (xs, r_att_cache, r_cnn_cache)
- def forward_chunk_by_chunk(
- self,
- xs: torch.Tensor,
- decoding_chunk_size: int,
- num_decoding_left_chunks: int = -1,
- ) -> Tuple[torch.Tensor, torch.Tensor]:
- """ Forward input chunk by chunk with chunk_size like a streaming
- fashion
- Here we should pay special attention to computation cache in the
- streaming style forward chunk by chunk. Three things should be taken
- into account for computation in the current network:
- 1. transformer/conformer encoder layers output cache
- 2. convolution in conformer
- 3. convolution in subsampling
- However, we don't implement subsampling cache for:
- 1. We can control subsampling module to output the right result by
- overlapping input instead of cache left context, even though it
- wastes some computation, but subsampling only takes a very
- small fraction of computation in the whole model.
- 2. Typically, there are several covolution layers with subsampling
- in subsampling module, it is tricky and complicated to do cache
- with different convolution layers with different subsampling
- rate.
- 3. Currently, nn.Sequential is used to stack all the convolution
- layers in subsampling, we need to rewrite it to make it work
- with cache, which is not prefered.
- Args:
- xs (torch.Tensor): (1, max_len, dim)
- chunk_size (int): decoding chunk size
- """
- assert decoding_chunk_size > 0
- # The model is trained by static or dynamic chunk
- assert self.static_chunk_size > 0 or self.use_dynamic_chunk
- subsampling = self.embed.subsampling_rate
- context = self.embed.right_context + 1 # Add current frame
- stride = subsampling * decoding_chunk_size
- decoding_window = (decoding_chunk_size - 1) * subsampling + context
- num_frames = xs.size(1)
- att_cache: torch.Tensor = torch.zeros((0, 0, 0, 0), device=xs.device)
- cnn_cache: torch.Tensor = torch.zeros((0, 0, 0, 0), device=xs.device)
- outputs = []
- offset = 0
- required_cache_size = decoding_chunk_size * num_decoding_left_chunks
- # Feed forward overlap input step by step
- for cur in range(0, num_frames - context + 1, stride):
- end = min(cur + decoding_window, num_frames)
- chunk_xs = xs[:, cur:end, :]
- (y, att_cache,
- cnn_cache) = self.forward_chunk(chunk_xs, offset,
- required_cache_size, att_cache,
- cnn_cache)
- outputs.append(y)
- offset += y.size(1)
- ys = torch.cat(outputs, 1)
- masks = torch.ones((1, 1, ys.size(1)),
- device=ys.device,
- dtype=torch.bool)
- return ys, masks
- class TransformerEncoder(BaseEncoder):
- """Transformer encoder module."""
- def __init__(
- self,
- input_size: int,
- output_size: int = 256,
- attention_heads: int = 4,
- linear_units: int = 2048,
- num_blocks: int = 6,
- dropout_rate: float = 0.1,
- positional_dropout_rate: float = 0.1,
- attention_dropout_rate: float = 0.0,
- input_layer: str = "conv2d",
- pos_enc_layer_type: str = "abs_pos",
- normalize_before: bool = True,
- static_chunk_size: int = 0,
- use_dynamic_chunk: bool = False,
- global_cmvn: torch.nn.Module = None,
- use_dynamic_left_chunk: bool = False,
- key_bias: bool = True,
- selfattention_layer_type: str = "selfattn",
- activation_type: str = "relu",
- gradient_checkpointing: bool = False,
- ):
- """ Construct TransformerEncoder
- See Encoder for the meaning of each parameter.
- """
- super().__init__(input_size, output_size, attention_heads,
- linear_units, num_blocks, dropout_rate,
- positional_dropout_rate, attention_dropout_rate,
- input_layer, pos_enc_layer_type, normalize_before,
- static_chunk_size, use_dynamic_chunk, global_cmvn,
- use_dynamic_left_chunk, gradient_checkpointing)
- activation = COSYVOICE_ACTIVATION_CLASSES[activation_type]()
- self.encoders = torch.nn.ModuleList([
- TransformerEncoderLayer(
- output_size,
- COSYVOICE_ATTENTION_CLASSES[selfattention_layer_type](attention_heads,
- output_size,
- attention_dropout_rate,
- key_bias),
- PositionwiseFeedForward(output_size, linear_units,
- dropout_rate, activation),
- dropout_rate, normalize_before) for _ in range(num_blocks)
- ])
- class ConformerEncoder(BaseEncoder):
- """Conformer encoder module."""
- def __init__(
- self,
- input_size: int,
- output_size: int = 256,
- attention_heads: int = 4,
- linear_units: int = 2048,
- num_blocks: int = 6,
- dropout_rate: float = 0.1,
- positional_dropout_rate: float = 0.1,
- attention_dropout_rate: float = 0.0,
- input_layer: str = "conv2d",
- pos_enc_layer_type: str = "rel_pos",
- normalize_before: bool = True,
- static_chunk_size: int = 0,
- use_dynamic_chunk: bool = False,
- global_cmvn: torch.nn.Module = None,
- use_dynamic_left_chunk: bool = False,
- positionwise_conv_kernel_size: int = 1,
- macaron_style: bool = True,
- selfattention_layer_type: str = "rel_selfattn",
- activation_type: str = "swish",
- use_cnn_module: bool = True,
- cnn_module_kernel: int = 15,
- causal: bool = False,
- cnn_module_norm: str = "batch_norm",
- key_bias: bool = True,
- gradient_checkpointing: bool = False,
- ):
- """Construct ConformerEncoder
- Args:
- input_size to use_dynamic_chunk, see in BaseEncoder
- positionwise_conv_kernel_size (int): Kernel size of positionwise
- conv1d layer.
- macaron_style (bool): Whether to use macaron style for
- positionwise layer.
- selfattention_layer_type (str): Encoder attention layer type,
- the parameter has no effect now, it's just for configure
- compatibility.
- activation_type (str): Encoder activation function type.
- use_cnn_module (bool): Whether to use convolution module.
- cnn_module_kernel (int): Kernel size of convolution module.
- causal (bool): whether to use causal convolution or not.
- key_bias: whether use bias in attention.linear_k, False for whisper models.
- """
- super().__init__(input_size, output_size, attention_heads,
- linear_units, num_blocks, dropout_rate,
- positional_dropout_rate, attention_dropout_rate,
- input_layer, pos_enc_layer_type, normalize_before,
- static_chunk_size, use_dynamic_chunk, global_cmvn,
- use_dynamic_left_chunk, gradient_checkpointing)
- activation = COSYVOICE_ACTIVATION_CLASSES[activation_type]()
- # self-attention module definition
- encoder_selfattn_layer_args = (
- attention_heads,
- output_size,
- attention_dropout_rate,
- key_bias,
- )
- # feed-forward module definition
- positionwise_layer_args = (
- output_size,
- linear_units,
- dropout_rate,
- activation,
- )
- # convolution module definition
- convolution_layer_args = (output_size, cnn_module_kernel, activation,
- cnn_module_norm, causal)
- self.encoders = torch.nn.ModuleList([
- ConformerEncoderLayer(
- output_size,
- COSYVOICE_ATTENTION_CLASSES[selfattention_layer_type](
- *encoder_selfattn_layer_args),
- PositionwiseFeedForward(*positionwise_layer_args),
- PositionwiseFeedForward(
- *positionwise_layer_args) if macaron_style else None,
- ConvolutionModule(
- *convolution_layer_args) if use_cnn_module else None,
- dropout_rate,
- normalize_before,
- ) for _ in range(num_blocks)
- ])
|