| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596 |
- # Copyright (c) 2019 Shigeki Karita
- # 2020 Mobvoi Inc (Binbin Zhang)
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """Label smoothing module."""
- import torch
- from torch import nn
- class LabelSmoothingLoss(nn.Module):
- """Label-smoothing loss.
- In a standard CE loss, the label's data distribution is:
- [0,1,2] ->
- [
- [1.0, 0.0, 0.0],
- [0.0, 1.0, 0.0],
- [0.0, 0.0, 1.0],
- ]
- In the smoothing version CE Loss,some probabilities
- are taken from the true label prob (1.0) and are divided
- among other labels.
- e.g.
- smoothing=0.1
- [0,1,2] ->
- [
- [0.9, 0.05, 0.05],
- [0.05, 0.9, 0.05],
- [0.05, 0.05, 0.9],
- ]
- Args:
- size (int): the number of class
- padding_idx (int): padding class id which will be ignored for loss
- smoothing (float): smoothing rate (0.0 means the conventional CE)
- normalize_length (bool):
- normalize loss by sequence length if True
- normalize loss by batch size if False
- """
- def __init__(self,
- size: int,
- padding_idx: int,
- smoothing: float,
- normalize_length: bool = False):
- """Construct an LabelSmoothingLoss object."""
- super(LabelSmoothingLoss, self).__init__()
- self.criterion = nn.KLDivLoss(reduction="none")
- self.padding_idx = padding_idx
- self.confidence = 1.0 - smoothing
- self.smoothing = smoothing
- self.size = size
- self.normalize_length = normalize_length
- def forward(self, x: torch.Tensor, target: torch.Tensor) -> torch.Tensor:
- """Compute loss between x and target.
- The model outputs and data labels tensors are flatten to
- (batch*seqlen, class) shape and a mask is applied to the
- padding part which should not be calculated for loss.
- Args:
- x (torch.Tensor): prediction (batch, seqlen, class)
- target (torch.Tensor):
- target signal masked with self.padding_id (batch, seqlen)
- Returns:
- loss (torch.Tensor) : The KL loss, scalar float value
- """
- assert x.size(2) == self.size
- batch_size = x.size(0)
- x = x.view(-1, self.size)
- target = target.view(-1)
- # use zeros_like instead of torch.no_grad() for true_dist,
- # since no_grad() can not be exported by JIT
- true_dist = torch.zeros_like(x)
- true_dist.fill_(self.smoothing / (self.size - 1))
- ignore = target == self.padding_idx # (B,)
- total = len(target) - ignore.sum().item()
- target = target.masked_fill(ignore, 0) # avoid -1 index
- true_dist.scatter_(1, target.unsqueeze(1), self.confidence)
- kl = self.criterion(torch.log_softmax(x, dim=1), true_dist)
- denom = total if self.normalize_length else batch_size
- return kl.masked_fill(ignore.unsqueeze(1), 0).sum() / denom
|