| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115 |
- # Copyright (c) 2019 Shigeki Karita
- # 2020 Mobvoi Inc (Binbin Zhang)
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """Positionwise feed forward layer definition."""
- import torch
- class PositionwiseFeedForward(torch.nn.Module):
- """Positionwise feed forward layer.
- FeedForward are appied on each position of the sequence.
- The output dim is same with the input dim.
- Args:
- idim (int): Input dimenstion.
- hidden_units (int): The number of hidden units.
- dropout_rate (float): Dropout rate.
- activation (torch.nn.Module): Activation function
- """
- def __init__(
- self,
- idim: int,
- hidden_units: int,
- dropout_rate: float,
- activation: torch.nn.Module = torch.nn.ReLU(),
- ):
- """Construct a PositionwiseFeedForward object."""
- super(PositionwiseFeedForward, self).__init__()
- self.w_1 = torch.nn.Linear(idim, hidden_units)
- self.activation = activation
- self.dropout = torch.nn.Dropout(dropout_rate)
- self.w_2 = torch.nn.Linear(hidden_units, idim)
- def forward(self, xs: torch.Tensor) -> torch.Tensor:
- """Forward function.
- Args:
- xs: input tensor (B, L, D)
- Returns:
- output tensor, (B, L, D)
- """
- return self.w_2(self.dropout(self.activation(self.w_1(xs))))
- class MoEFFNLayer(torch.nn.Module):
- """
- Mixture of expert with Positionwise feed forward layer
- See also figure 1 in https://arxiv.org/pdf/2305.15663.pdf
- The output dim is same with the input dim.
- Modified from https://github.com/Lightning-AI/lit-gpt/pull/823
- https://github.com/mistralai/mistral-src/blob/b46d6/moe_one_file_ref.py#L203-L219
- Args:
- n_expert: number of expert.
- n_expert_per_token: The actual number of experts used for each frame
- idim (int): Input dimenstion.
- hidden_units (int): The number of hidden units.
- dropout_rate (float): Dropout rate.
- activation (torch.nn.Module): Activation function
- """
- def __init__(
- self,
- n_expert: int,
- n_expert_per_token: int,
- idim: int,
- hidden_units: int,
- dropout_rate: float,
- activation: torch.nn.Module = torch.nn.ReLU(),
- ):
- super(MoEFFNLayer, self).__init__()
- self.gate = torch.nn.Linear(idim, n_expert, bias=False)
- self.experts = torch.nn.ModuleList(
- PositionwiseFeedForward(idim, hidden_units, dropout_rate,
- activation) for _ in range(n_expert))
- self.n_expert_per_token = n_expert_per_token
- def forward(self, xs: torch.Tensor) -> torch.Tensor:
- """Foward function.
- Args:
- xs: input tensor (B, L, D)
- Returns:
- output tensor, (B, L, D)
- """
- B, L, D = xs.size(
- ) # batch size, sequence length, embedding dimension (idim)
- xs = xs.view(-1, D) # (B*L, D)
- router = self.gate(xs) # (B*L, n_expert)
- logits, indices = torch.topk(
- router, self.n_expert_per_token
- ) # probs:(B*L, n_expert), indices: (B*L, n_expert)
- weights = torch.nn.functional.softmax(
- logits, dim=1,
- dtype=torch.float).to(dtype=xs.dtype) # (B*L, n_expert_per_token)
- output = torch.zeros_like(xs) # (B*L, D)
- for i, expert in enumerate(self.experts):
- mask = indices == i
- batch_idx, ith_expert = torch.where(mask)
- output[batch_idx] += weights[batch_idx, ith_expert, None] * expert(
- xs[batch_idx])
- return output.view(B, L, D)
|