| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293 |
- # Copyright (c) 2020 Mobvoi Inc (Binbin Zhang)
- # 2024 Alibaba Inc (authors: Xiang Lyu)
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # Modified from ESPnet(https://github.com/espnet/espnet)
- """Unility functions for Transformer."""
- from typing import List
- import torch
- IGNORE_ID = -1
- def pad_list(xs: List[torch.Tensor], pad_value: int):
- """Perform padding for the list of tensors.
- Args:
- xs (List): List of Tensors [(T_1, `*`), (T_2, `*`), ..., (T_B, `*`)].
- pad_value (float): Value for padding.
- Returns:
- Tensor: Padded tensor (B, Tmax, `*`).
- Examples:
- >>> x = [torch.ones(4), torch.ones(2), torch.ones(1)]
- >>> x
- [tensor([1., 1., 1., 1.]), tensor([1., 1.]), tensor([1.])]
- >>> pad_list(x, 0)
- tensor([[1., 1., 1., 1.],
- [1., 1., 0., 0.],
- [1., 0., 0., 0.]])
- """
- max_len = max([len(item) for item in xs])
- batchs = len(xs)
- ndim = xs[0].ndim
- if ndim == 1:
- pad_res = torch.zeros(batchs,
- max_len,
- dtype=xs[0].dtype,
- device=xs[0].device)
- elif ndim == 2:
- pad_res = torch.zeros(batchs,
- max_len,
- xs[0].shape[1],
- dtype=xs[0].dtype,
- device=xs[0].device)
- elif ndim == 3:
- pad_res = torch.zeros(batchs,
- max_len,
- xs[0].shape[1],
- xs[0].shape[2],
- dtype=xs[0].dtype,
- device=xs[0].device)
- else:
- raise ValueError(f"Unsupported ndim: {ndim}")
- pad_res.fill_(pad_value)
- for i in range(batchs):
- pad_res[i, :len(xs[i])] = xs[i]
- return pad_res
- def th_accuracy(pad_outputs: torch.Tensor, pad_targets: torch.Tensor,
- ignore_label: int) -> torch.Tensor:
- """Calculate accuracy.
- Args:
- pad_outputs (Tensor): Prediction tensors (B * Lmax, D).
- pad_targets (LongTensor): Target label tensors (B, Lmax).
- ignore_label (int): Ignore label id.
- Returns:
- torch.Tensor: Accuracy value (0.0 - 1.0).
- """
- pad_pred = pad_outputs.view(pad_targets.size(0), pad_targets.size(1),
- pad_outputs.size(1)).argmax(2)
- mask = pad_targets != ignore_label
- numerator = torch.sum(
- pad_pred.masked_select(mask) == pad_targets.masked_select(mask))
- denominator = torch.sum(mask)
- return (numerator / denominator).detach()
|