| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105 |
- #!/bin/bash
- # Copyright 2024 Alibaba Inc. All Rights Reserved.
- . ./path.sh || exit 1;
- stage=-1
- stop_stage=3
- data_url=www.openslr.org/resources/60
- data_dir=/mnt/lyuxiang.lx/data/tts/openslr/libritts
- pretrained_model_dir=../../../pretrained_models/CosyVoice-300M
- if [ ${stage} -le -1 ] && [ ${stop_stage} -ge -1 ]; then
- echo "Data Download"
- for part in dev-clean test-clean dev-other test-other train-clean-100 train-clean-360 train-other-500; do
- local/download_and_untar.sh ${data_dir} ${data_url} ${part}
- done
- fi
- if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
- echo "Data preparation, prepare wav.scp/text/utt2spk/spk2utt"
- for x in train-clean-100 train-clean-360 train-other-500 dev-clean dev-other test-clean test-other; do
- mkdir -p data/$x
- python local/prepare_data.py --src_dir $data_dir/LibriTTS/$x --des_dir data/$x
- done
- fi
- if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
- echo "Extract campplus speaker embedding, you will get spk2embedding.pt and utt2embedding.pt in data/$x dir"
- for x in train-clean-100 train-clean-360 train-other-500 dev-clean dev-other test-clean test-other; do
- tools/extract_embedding.py --dir data/$x \
- --onnx_path $pretrained_model_dir/campplus.onnx
- done
- fi
- if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
- echo "Extract discrete speech token, you will get utt2speech_token.pt in data/$x dir"
- for x in train-clean-100 train-clean-360 train-other-500 dev-clean dev-other test-clean test-other; do
- tools/extract_speech_token.py --dir data/$x \
- --onnx_path $pretrained_model_dir/speech_tokenizer_v1.onnx
- done
- fi
- if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
- echo "Prepare required parquet format data, you should have prepared wav.scp/text/utt2spk/spk2utt/utt2embedding.pt/spk2embedding.pt/utt2speech_token.pt"
- for x in train-clean-100 train-clean-360 train-other-500 dev-clean dev-other test-clean test-other; do
- mkdir -p data/$x/parquet
- tools/make_parquet_list.py --num_utts_per_parquet 1000 \
- --num_processes 10 \
- --src_dir data/$x \
- --des_dir data/$x/parquet
- done
- fi
- # inference
- if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then
- echo "Run inference. Please make sure utt in tts_text is in prompt_data"
- for mode in sft zero_shot; do
- python cosyvoice/bin/inference.py --mode $mode \
- --gpu 0 \
- --config conf/cosyvoice.yaml \
- --prompt_data data/test-clean/parquet/data.list \
- --prompt_utt2data data/test-clean/parquet/utt2data.list \
- --tts_text `pwd`/tts_text.json \
- --llm_model $pretrained_model_dir/llm.pt \
- --flow_model $pretrained_model_dir/flow.pt \
- --hifigan_model $pretrained_model_dir/hift.pt \
- --result_dir `pwd`/exp/cosyvoice/test-clean/$mode
- done
- fi
- # train llm
- export CUDA_VISIBLE_DEVICES="0,1,2,3"
- num_gpus=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}')
- job_id=1986
- dist_backend="nccl"
- num_workers=2
- prefetch=100
- train_engine=torch_ddp
- if [ ${stage} -le 5 ] && [ ${stop_stage} -ge 5 ]; then
- echo "Run train. We only support llm traning for now. If your want to train from scratch, please use conf/cosyvoice.fromscratch.yaml"
- if [ $train_engine == 'deepspeed' ]; then
- echo "Notice deepspeed has its own optimizer config. Modify conf/ds_stage2.json if necessary"
- fi
- cat data/{train-clean-100,train-clean-360,train-other-500}/parquet/data.list > data/train.data.list
- cat data/{dev-clean,dev-other}/parquet/data.list > data/dev.data.list
- for model in llm; do
- torchrun --nnodes=1 --nproc_per_node=$num_gpus \
- --rdzv_id=$job_id --rdzv_backend="c10d" --rdzv_endpoint="localhost:0" \
- cosyvoice/bin/train.py \
- --train_engine $train_engine \
- --config conf/cosyvoice.yaml \
- --train_data data/train.data.list \
- --cv_data data/dev.data.list \
- --model $model \
- --checkpoint $pretrained_model_dir/$model.pt \
- --model_dir `pwd`/exp/cosyvoice/$model/$train_engine \
- --tensorboard_dir `pwd`/tensorboard/cosyvoice/$model/$train_engine \
- --ddp.dist_backend $dist_backend \
- --num_workers ${num_workers} \
- --prefetch ${prefetch} \
- --pin_memory \
- --deepspeed_config ./conf/ds_stage2.json \
- --deepspeed.save_states model+optimizer
- done
- fi
|