| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394 |
- #!/usr/bin/env python3
- # Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu)
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import argparse
- import os
- from concurrent.futures import ThreadPoolExecutor
- import onnxruntime
- import torch
- import torchaudio
- import torchaudio.compliance.kaldi as kaldi
- from tqdm import tqdm
- from itertools import repeat
- def extract_embedding(utt: str, wav_file: str, ort_session: onnxruntime.InferenceSession):
- audio, sample_rate = torchaudio.load(wav_file)
- if sample_rate != 16000:
- audio = torchaudio.transforms.Resample(
- orig_freq=sample_rate, new_freq=16000
- )(audio)
- feat = kaldi.fbank(audio, num_mel_bins=80, dither=0, sample_frequency=16000)
- feat = feat - feat.mean(dim=0, keepdim=True)
- embedding = ort_session.run(None, {ort_session.get_inputs()[0].name: feat.unsqueeze(dim=0).cpu().numpy()})[0].flatten().tolist()
- return (utt, embedding)
- def main(args):
- utt2wav, utt2spk = {}, {}
- with open("{}/wav.scp".format(args.dir)) as f:
- for l in f:
- l = l.replace("\n", "").split()
- utt2wav[l[0]] = l[1]
- with open("{}/utt2spk".format(args.dir)) as f:
- for l in f:
- l = l.replace("\n", "").split()
- utt2spk[l[0]] = l[1]
- assert os.path.exists(args.onnx_path), "onnx_path not exists"
- option = onnxruntime.SessionOptions()
- option.graph_optimization_level = (
- onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL
- )
- option.intra_op_num_threads = 1
- providers = ["CPUExecutionProvider"]
- ort_session = onnxruntime.InferenceSession(
- args.onnx_path, sess_options=option, providers=providers
- )
- all_utt = utt2wav.keys()
- with ThreadPoolExecutor(max_workers=args.num_thread) as executor:
- results = list(
- tqdm(
- executor.map(extract_embedding, all_utt, [utt2wav[utt] for utt in all_utt], repeat(ort_session)),
- total=len(utt2wav),
- desc="Process data: "
- )
- )
- utt2embedding, spk2embedding = {}, {}
- for utt, embedding in results:
- utt2embedding[utt] = embedding
- spk = utt2spk[utt]
- if spk not in spk2embedding:
- spk2embedding[spk] = []
- spk2embedding[spk].append(embedding)
- for k, v in spk2embedding.items():
- spk2embedding[k] = torch.tensor(v).mean(dim=0).tolist()
- torch.save(utt2embedding, "{}/utt2embedding.pt".format(args.dir))
- torch.save(spk2embedding, "{}/spk2embedding.pt".format(args.dir))
- if __name__ == "__main__":
- parser = argparse.ArgumentParser()
- parser.add_argument("--dir", type=str)
- parser.add_argument("--onnx_path", type=str)
- parser.add_argument("--num_thread", type=int, default=8)
- args = parser.parse_args()
- main(args)
|