model.py 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178
  1. # Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu)
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. import torch
  15. import numpy as np
  16. import threading
  17. import time
  18. from contextlib import nullcontext
  19. import uuid
  20. from cosyvoice.utils.common import fade_in_out
  21. class CosyVoiceModel:
  22. def __init__(self,
  23. llm: torch.nn.Module,
  24. flow: torch.nn.Module,
  25. hift: torch.nn.Module):
  26. self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
  27. self.llm = llm
  28. self.flow = flow
  29. self.hift = hift
  30. self.token_min_hop_len = 100
  31. self.token_max_hop_len = 200
  32. self.token_overlap_len = 20
  33. # mel fade in out
  34. self.mel_overlap_len = 34
  35. self.mel_window = np.hamming(2 * self.mel_overlap_len)
  36. # hift cache
  37. self.mel_cache_len = 20
  38. self.source_cache_len = int(self.mel_cache_len * 256)
  39. # rtf and decoding related
  40. self.stream_scale_factor = 1
  41. assert self.stream_scale_factor >= 1, 'stream_scale_factor should be greater than 1, change it according to your actual rtf'
  42. self.llm_context = torch.cuda.stream(torch.cuda.Stream(self.device)) if torch.cuda.is_available() else nullcontext()
  43. self.flow_hift_context = torch.cuda.stream(torch.cuda.Stream(self.device)) if torch.cuda.is_available() else nullcontext()
  44. self.lock = threading.Lock()
  45. # dict used to store session related variable
  46. self.tts_speech_token_dict = {}
  47. self.llm_end_dict = {}
  48. self.mel_overlap_dict = {}
  49. self.hift_cache_dict = {}
  50. def load(self, llm_model, flow_model, hift_model):
  51. self.llm.load_state_dict(torch.load(llm_model, map_location=self.device))
  52. self.llm.to(self.device).eval()
  53. self.llm.half()
  54. self.flow.load_state_dict(torch.load(flow_model, map_location=self.device))
  55. self.flow.to(self.device).eval()
  56. self.hift.load_state_dict(torch.load(hift_model, map_location=self.device))
  57. self.hift.to(self.device).eval()
  58. def load_jit(self, llm_text_encoder_model, llm_llm_model):
  59. llm_text_encoder = torch.jit.load(llm_text_encoder_model)
  60. self.llm.text_encoder = llm_text_encoder
  61. llm_llm = torch.jit.load(llm_llm_model)
  62. self.llm.llm = llm_llm
  63. def load_trt(self):
  64. # TODO 你需要的TRT推理的准备
  65. self.flow.decoder.estimator = xxx
  66. self.flow.decoder.session = xxx
  67. def llm_job(self, text, prompt_text, llm_prompt_speech_token, llm_embedding, uuid):
  68. with self.llm_context:
  69. for i in self.llm.inference(text=text.to(self.device),
  70. text_len=torch.tensor([text.shape[1]], dtype=torch.int32).to(self.device),
  71. prompt_text=prompt_text.to(self.device),
  72. prompt_text_len=torch.tensor([prompt_text.shape[1]], dtype=torch.int32).to(self.device),
  73. prompt_speech_token=llm_prompt_speech_token.to(self.device),
  74. prompt_speech_token_len=torch.tensor([llm_prompt_speech_token.shape[1]], dtype=torch.int32).to(self.device),
  75. embedding=llm_embedding.to(self.device).half(),
  76. sampling=25,
  77. max_token_text_ratio=30,
  78. min_token_text_ratio=3):
  79. self.tts_speech_token_dict[uuid].append(i)
  80. self.llm_end_dict[uuid] = True
  81. def token2wav(self, token, prompt_token, prompt_feat, embedding, uuid, finalize=False):
  82. with self.flow_hift_context:
  83. tts_mel = self.flow.inference(token=token.to(self.device),
  84. token_len=torch.tensor([token.shape[1]], dtype=torch.int32).to(self.device),
  85. prompt_token=prompt_token.to(self.device),
  86. prompt_token_len=torch.tensor([prompt_token.shape[1]], dtype=torch.int32).to(self.device),
  87. prompt_feat=prompt_feat.to(self.device),
  88. prompt_feat_len=torch.tensor([prompt_feat.shape[1]], dtype=torch.int32).to(self.device),
  89. embedding=embedding.to(self.device))
  90. # mel overlap fade in out
  91. if self.mel_overlap_dict[uuid] is not None:
  92. tts_mel = fade_in_out(tts_mel, self.mel_overlap_dict[uuid], self.mel_window)
  93. # append hift cache
  94. if self.hift_cache_dict[uuid] is not None:
  95. hift_cache_mel, hift_cache_source = self.hift_cache_dict[uuid]['mel'], self.hift_cache_dict[uuid]['source']
  96. tts_mel = torch.concat([hift_cache_mel, tts_mel], dim=2)
  97. else:
  98. hift_cache_source = torch.zeros(1, 1, 0)
  99. # keep overlap mel and hift cache
  100. if finalize is False:
  101. self.mel_overlap_dict[uuid] = tts_mel[:, :, -self.mel_overlap_len:]
  102. tts_mel = tts_mel[:, :, :-self.mel_overlap_len]
  103. tts_speech, tts_source = self.hift.inference(mel=tts_mel, cache_source=hift_cache_source)
  104. self.hift_cache_dict[uuid] = {'source': tts_source[:, :, -self.source_cache_len:], 'mel': tts_mel[:, :, -self.mel_cache_len:]}
  105. tts_speech = tts_speech[:, :-self.source_cache_len]
  106. else:
  107. tts_speech, tts_source = self.hift.inference(mel=tts_mel, cache_source=hift_cache_source)
  108. return tts_speech
  109. def inference(self, text, flow_embedding, llm_embedding=torch.zeros(0, 192),
  110. prompt_text=torch.zeros(1, 0, dtype=torch.int32),
  111. llm_prompt_speech_token=torch.zeros(1, 0, dtype=torch.int32),
  112. flow_prompt_speech_token=torch.zeros(1, 0, dtype=torch.int32),
  113. prompt_speech_feat=torch.zeros(1, 0, 80), stream=False, **kwargs):
  114. # this_uuid is used to track variables related to this inference thread
  115. this_uuid = str(uuid.uuid1())
  116. with self.lock:
  117. self.tts_speech_token_dict[this_uuid], self.llm_end_dict[this_uuid], self.mel_overlap_dict[this_uuid], self.hift_cache_dict[this_uuid] = [], False, None, None
  118. p = threading.Thread(target=self.llm_job, args=(text, prompt_text, llm_prompt_speech_token, llm_embedding, this_uuid))
  119. p.start()
  120. p.join()
  121. if stream is True:
  122. token_hop_len = self.token_min_hop_len
  123. while True:
  124. time.sleep(0.1)
  125. if len(self.tts_speech_token_dict[this_uuid]) >= token_hop_len + self.token_overlap_len:
  126. this_tts_speech_token = torch.concat(self.tts_speech_token_dict[this_uuid][:token_hop_len + self.token_overlap_len], dim=1)
  127. with self.flow_hift_context:
  128. this_tts_speech = self.token2wav(token=this_tts_speech_token,
  129. prompt_token=flow_prompt_speech_token,
  130. prompt_feat=prompt_speech_feat,
  131. embedding=flow_embedding,
  132. uuid=this_uuid,
  133. finalize=False)
  134. yield {'tts_speech': this_tts_speech.cpu()}
  135. with self.lock:
  136. self.tts_speech_token_dict[this_uuid] = self.tts_speech_token_dict[this_uuid][token_hop_len:]
  137. # increase token_hop_len for better speech quality
  138. token_hop_len = min(self.token_max_hop_len, int(token_hop_len * self.stream_scale_factor))
  139. if self.llm_end_dict[this_uuid] is True and len(self.tts_speech_token_dict[this_uuid]) < token_hop_len + self.token_overlap_len:
  140. break
  141. # p.join()
  142. # deal with remain tokens, make sure inference remain token len equals token_hop_len when cache_speech is not None
  143. this_tts_speech_token = torch.concat(self.tts_speech_token_dict[this_uuid], dim=1)
  144. with self.flow_hift_context:
  145. this_tts_speech = self.token2wav(token=this_tts_speech_token,
  146. prompt_token=flow_prompt_speech_token,
  147. prompt_feat=prompt_speech_feat,
  148. embedding=flow_embedding,
  149. uuid=this_uuid,
  150. finalize=True)
  151. yield {'tts_speech': this_tts_speech.cpu()}
  152. else:
  153. # deal with all tokens
  154. # p.join()
  155. this_tts_speech_token = torch.concat(self.tts_speech_token_dict[this_uuid], dim=1)
  156. with self.flow_hift_context:
  157. this_tts_speech = self.token2wav(token=this_tts_speech_token,
  158. prompt_token=flow_prompt_speech_token,
  159. prompt_feat=prompt_speech_feat,
  160. embedding=flow_embedding,
  161. uuid=this_uuid,
  162. finalize=True)
  163. yield {'tts_speech': this_tts_speech.cpu()}
  164. with self.lock:
  165. self.tts_speech_token_dict.pop(this_uuid)
  166. self.llm_end_dict.pop(this_uuid)
  167. self.mel_overlap_dict.pop(this_uuid)
  168. self.hift_cache_dict.pop(this_uuid)
  169. torch.cuda.synchronize()