123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172 |
- #!/usr/bin/env python3
- # Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu)
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import argparse
- from concurrent.futures import ThreadPoolExecutor, as_completed
- import logging
- import torch
- from tqdm import tqdm
- import onnxruntime
- import numpy as np
- import torchaudio
- import whisper
- def single_job(utt):
- audio, sample_rate = torchaudio.load(utt2wav[utt], backend='soundfile')
- if sample_rate != 16000:
- audio = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000)(audio)
- # Convert audio to mono
- if audio.shape[0] > 1:
- audio = audio.mean(dim=0, keepdim=True)
- if audio.shape[1] / 16000 > 30:
- logging.warning('do not support extract speech token for audio longer than 30s')
- speech_token = []
- else:
- feat = whisper.log_mel_spectrogram(audio, n_mels=128)
- speech_token = ort_session.run(None, {ort_session.get_inputs()[0].name: feat.detach().cpu().numpy(),
- ort_session.get_inputs()[1].name: np.array([feat.shape[2]], dtype=np.int32)})[0].flatten().tolist()
- return utt, speech_token
- def main(args):
- all_task = [executor.submit(single_job, utt) for utt in utt2wav.keys()]
- utt2speech_token = {}
- for future in tqdm(as_completed(all_task)):
- utt, speech_token = future.result()
- utt2speech_token[utt] = speech_token
- torch.save(utt2speech_token, '{}/utt2speech_token.pt'.format(args.dir))
- if __name__ == "__main__":
- parser = argparse.ArgumentParser()
- parser.add_argument("--dir", type=str)
- parser.add_argument("--onnx_path", type=str)
- parser.add_argument("--num_thread", type=int, default=8)
- args = parser.parse_args()
- utt2wav = {}
- with open('{}/wav.scp'.format(args.dir)) as f:
- for l in f:
- l = l.replace('\n', '').split()
- utt2wav[l[0]] = l[1]
- option = onnxruntime.SessionOptions()
- option.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL
- option.intra_op_num_threads = 1
- providers = ["CUDAExecutionProvider"]
- ort_session = onnxruntime.InferenceSession(args.onnx_path, sess_options=option, providers=providers)
- executor = ThreadPoolExecutor(max_workers=args.num_thread)
- main(args)
|