cosyvoice.py 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179
  1. # Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu)
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. import os
  15. import time
  16. from typing import Generator
  17. from tqdm import tqdm
  18. from hyperpyyaml import load_hyperpyyaml
  19. from modelscope import snapshot_download
  20. import torch
  21. from cosyvoice.cli.frontend import CosyVoiceFrontEnd
  22. from cosyvoice.cli.model import CosyVoiceModel, CosyVoice2Model
  23. from cosyvoice.utils.file_utils import logging
  24. from cosyvoice.utils.class_utils import get_model_type
  25. class CosyVoice:
  26. def __init__(self, model_dir, load_jit=False, load_trt=False, fp16=False):
  27. self.instruct = True if '-Instruct' in model_dir else False
  28. self.model_dir = model_dir
  29. self.fp16 = fp16
  30. if not os.path.exists(model_dir):
  31. model_dir = snapshot_download(model_dir)
  32. hyper_yaml_path = '{}/cosyvoice.yaml'.format(model_dir)
  33. if not os.path.exists(hyper_yaml_path):
  34. raise ValueError('{} not found!'.format(hyper_yaml_path))
  35. with open(hyper_yaml_path, 'r') as f:
  36. configs = load_hyperpyyaml(f)
  37. assert get_model_type(configs) != CosyVoice2Model, 'do not use {} for CosyVoice initialization!'.format(model_dir)
  38. self.frontend = CosyVoiceFrontEnd(configs['get_tokenizer'],
  39. configs['feat_extractor'],
  40. '{}/campplus.onnx'.format(model_dir),
  41. '{}/speech_tokenizer_v1.onnx'.format(model_dir),
  42. '{}/spk2info.pt'.format(model_dir),
  43. configs['allowed_special'])
  44. self.sample_rate = configs['sample_rate']
  45. if torch.cuda.is_available() is False and (load_jit is True or load_trt is True or fp16 is True):
  46. load_jit, load_trt, fp16 = False, False, False
  47. logging.warning('no cuda device, set load_jit/load_trt/fp16 to False')
  48. self.model = CosyVoiceModel(configs['llm'], configs['flow'], configs['hift'], fp16)
  49. self.model.load('{}/llm.pt'.format(model_dir),
  50. '{}/flow.pt'.format(model_dir),
  51. '{}/hift.pt'.format(model_dir))
  52. if load_jit:
  53. self.model.load_jit('{}/llm.text_encoder.{}.zip'.format(model_dir, 'fp16' if self.fp16 is True else 'fp32'),
  54. '{}/llm.llm.{}.zip'.format(model_dir, 'fp16' if self.fp16 is True else 'fp32'),
  55. '{}/flow.encoder.{}.zip'.format(model_dir, 'fp16' if self.fp16 is True else 'fp32'))
  56. if load_trt:
  57. self.model.load_trt('{}/flow.decoder.estimator.{}.mygpu.plan'.format(model_dir, 'fp16' if self.fp16 is True else 'fp32'),
  58. '{}/flow.decoder.estimator.fp32.onnx'.format(model_dir),
  59. self.fp16)
  60. del configs
  61. def list_available_spks(self):
  62. spks = list(self.frontend.spk2info.keys())
  63. return spks
  64. def inference_sft(self, tts_text, spk_id, stream=False, speed=1.0, text_frontend=True):
  65. for i in tqdm(self.frontend.text_normalize(tts_text, split=True, text_frontend=text_frontend)):
  66. model_input = self.frontend.frontend_sft(i, spk_id)
  67. start_time = time.time()
  68. logging.info('synthesis text {}'.format(i))
  69. for model_output in self.model.tts(**model_input, stream=stream, speed=speed):
  70. speech_len = model_output['tts_speech'].shape[1] / self.sample_rate
  71. logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
  72. yield model_output
  73. start_time = time.time()
  74. def inference_zero_shot(self, tts_text, prompt_text, prompt_speech_16k, stream=False, speed=1.0, text_frontend=True):
  75. prompt_text = self.frontend.text_normalize(prompt_text, split=False, text_frontend=text_frontend)
  76. for i in tqdm(self.frontend.text_normalize(tts_text, split=True, text_frontend=text_frontend)):
  77. if (not isinstance(i, Generator)) and len(i) < 0.5 * len(prompt_text):
  78. logging.warning('synthesis text {} too short than prompt text {}, this may lead to bad performance'.format(i, prompt_text))
  79. model_input = self.frontend.frontend_zero_shot(i, prompt_text, prompt_speech_16k, self.sample_rate)
  80. start_time = time.time()
  81. logging.info('synthesis text {}'.format(i))
  82. for model_output in self.model.tts(**model_input, stream=stream, speed=speed):
  83. speech_len = model_output['tts_speech'].shape[1] / self.sample_rate
  84. logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
  85. yield model_output
  86. start_time = time.time()
  87. def inference_cross_lingual(self, tts_text, prompt_speech_16k, stream=False, speed=1.0, text_frontend=True):
  88. for i in tqdm(self.frontend.text_normalize(tts_text, split=True, text_frontend=text_frontend)):
  89. model_input = self.frontend.frontend_cross_lingual(i, prompt_speech_16k, self.sample_rate)
  90. start_time = time.time()
  91. logging.info('synthesis text {}'.format(i))
  92. for model_output in self.model.tts(**model_input, stream=stream, speed=speed):
  93. speech_len = model_output['tts_speech'].shape[1] / self.sample_rate
  94. logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
  95. yield model_output
  96. start_time = time.time()
  97. def inference_instruct(self, tts_text, spk_id, instruct_text, stream=False, speed=1.0, text_frontend=True):
  98. assert isinstance(self.model, CosyVoiceModel), 'inference_instruct is only implemented for CosyVoice!'
  99. if self.instruct is False:
  100. raise ValueError('{} do not support instruct inference'.format(self.model_dir))
  101. instruct_text = self.frontend.text_normalize(instruct_text, split=False, text_frontend=text_frontend)
  102. for i in tqdm(self.frontend.text_normalize(tts_text, split=True, text_frontend=text_frontend)):
  103. model_input = self.frontend.frontend_instruct(i, spk_id, instruct_text)
  104. start_time = time.time()
  105. logging.info('synthesis text {}'.format(i))
  106. for model_output in self.model.tts(**model_input, stream=stream, speed=speed):
  107. speech_len = model_output['tts_speech'].shape[1] / self.sample_rate
  108. logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
  109. yield model_output
  110. start_time = time.time()
  111. def inference_vc(self, source_speech_16k, prompt_speech_16k, stream=False, speed=1.0):
  112. model_input = self.frontend.frontend_vc(source_speech_16k, prompt_speech_16k, self.sample_rate)
  113. start_time = time.time()
  114. for model_output in self.model.vc(**model_input, stream=stream, speed=speed):
  115. speech_len = model_output['tts_speech'].shape[1] / self.sample_rate
  116. logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
  117. yield model_output
  118. start_time = time.time()
  119. class CosyVoice2(CosyVoice):
  120. def __init__(self, model_dir, load_jit=False, load_trt=False, fp16=False):
  121. self.instruct = True if '-Instruct' in model_dir else False
  122. self.model_dir = model_dir
  123. self.fp16 = fp16
  124. if not os.path.exists(model_dir):
  125. model_dir = snapshot_download(model_dir)
  126. hyper_yaml_path = '{}/cosyvoice2.yaml'.format(model_dir)
  127. if not os.path.exists(hyper_yaml_path):
  128. raise ValueError('{} not found!'.format(hyper_yaml_path))
  129. with open(hyper_yaml_path, 'r') as f:
  130. configs = load_hyperpyyaml(f, overrides={'qwen_pretrain_path': os.path.join(model_dir, 'CosyVoice-BlankEN')})
  131. assert get_model_type(configs) == CosyVoice2Model, 'do not use {} for CosyVoice2 initialization!'.format(model_dir)
  132. self.frontend = CosyVoiceFrontEnd(configs['get_tokenizer'],
  133. configs['feat_extractor'],
  134. '{}/campplus.onnx'.format(model_dir),
  135. '{}/speech_tokenizer_v2.onnx'.format(model_dir),
  136. '{}/spk2info.pt'.format(model_dir),
  137. configs['allowed_special'])
  138. self.sample_rate = configs['sample_rate']
  139. if torch.cuda.is_available() is False and (load_jit is True or load_trt is True or fp16 is True):
  140. load_jit, load_trt, fp16 = False, False, False
  141. logging.warning('no cuda device, set load_jit/load_trt/fp16 to False')
  142. self.model = CosyVoice2Model(configs['llm'], configs['flow'], configs['hift'], fp16)
  143. self.model.load('{}/llm.pt'.format(model_dir),
  144. '{}/flow.pt'.format(model_dir),
  145. '{}/hift.pt'.format(model_dir))
  146. if load_jit:
  147. self.model.load_jit('{}/flow.encoder.{}.zip'.format(model_dir, 'fp16' if self.fp16 is True else 'fp32'))
  148. if load_trt:
  149. self.model.load_trt('{}/flow.decoder.estimator.{}.mygpu.plan'.format(model_dir, 'fp16' if self.fp16 is True else 'fp32'),
  150. '{}/flow.decoder.estimator.fp32.onnx'.format(model_dir),
  151. self.fp16)
  152. del configs
  153. def inference_instruct(self, *args, **kwargs):
  154. raise NotImplementedError('inference_instruct is not implemented for CosyVoice2!')
  155. def inference_instruct2(self, tts_text, instruct_text, prompt_speech_16k, stream=False, speed=1.0, text_frontend=True):
  156. assert isinstance(self.model, CosyVoice2Model), 'inference_instruct2 is only implemented for CosyVoice2!'
  157. for i in tqdm(self.frontend.text_normalize(tts_text, split=True, text_frontend=text_frontend)):
  158. model_input = self.frontend.frontend_instruct2(i, instruct_text, prompt_speech_16k, self.sample_rate)
  159. start_time = time.time()
  160. logging.info('synthesis text {}'.format(i))
  161. for model_output in self.model.tts(**model_input, stream=stream, speed=speed):
  162. speech_len = model_output['tts_speech'].shape[1] / self.sample_rate
  163. logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
  164. yield model_output
  165. start_time = time.time()