| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746 |
- # Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Kai Hu)
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """HIFI-GAN"""
- from typing import Dict, Optional, List
- import numpy as np
- from scipy.signal import get_window
- import torch
- import torch.nn as nn
- import torch.nn.functional as F
- from torch.nn import Conv1d
- from torch.nn import ConvTranspose1d
- from torch.nn.utils import remove_weight_norm
- try:
- from torch.nn.utils.parametrizations import weight_norm
- except ImportError:
- from torch.nn.utils import weight_norm
- from torch.distributions.uniform import Uniform
- from cosyvoice.transformer.convolution import CausalConv1d, CausalConv1dDownSample, CausalConv1dUpsample
- from cosyvoice.transformer.activation import Snake
- from cosyvoice.utils.common import get_padding
- from cosyvoice.utils.common import init_weights
- """hifigan based generator implementation.
- This code is modified from https://github.com/jik876/hifi-gan
- ,https://github.com/kan-bayashi/ParallelWaveGAN and
- https://github.com/NVIDIA/BigVGAN
- """
- class ResBlock(torch.nn.Module):
- """Residual block module in HiFiGAN/BigVGAN."""
- def __init__(
- self,
- channels: int = 512,
- kernel_size: int = 3,
- dilations: List[int] = [1, 3, 5],
- causal: bool = False,
- ):
- super(ResBlock, self).__init__()
- self.causal = causal
- self.convs1 = nn.ModuleList()
- self.convs2 = nn.ModuleList()
- for dilation in dilations:
- self.convs1.append(
- weight_norm(
- Conv1d(
- channels,
- channels,
- kernel_size,
- 1,
- dilation=dilation,
- padding=get_padding(kernel_size, dilation)) if causal is False else
- CausalConv1d(
- channels,
- channels,
- kernel_size,
- 1,
- dilation=dilation,
- causal_type='left'
- )
- )
- )
- self.convs2.append(
- weight_norm(
- Conv1d(
- channels,
- channels,
- kernel_size,
- 1,
- dilation=1,
- padding=get_padding(kernel_size, 1)) if causal is False else
- CausalConv1d(
- channels,
- channels,
- kernel_size,
- 1,
- dilation=1,
- causal_type='left'
- )
- )
- )
- self.convs1.apply(init_weights)
- self.convs2.apply(init_weights)
- self.activations1 = nn.ModuleList([
- Snake(channels, alpha_logscale=False)
- for _ in range(len(self.convs1))
- ])
- self.activations2 = nn.ModuleList([
- Snake(channels, alpha_logscale=False)
- for _ in range(len(self.convs2))
- ])
- def forward(self, x: torch.Tensor) -> torch.Tensor:
- for idx in range(len(self.convs1)):
- xt = self.activations1[idx](x)
- xt = self.convs1[idx](xt)
- xt = self.activations2[idx](xt)
- xt = self.convs2[idx](xt)
- x = xt + x
- return x
- def remove_weight_norm(self):
- for idx in range(len(self.convs1)):
- remove_weight_norm(self.convs1[idx])
- remove_weight_norm(self.convs2[idx])
- class SineGen(torch.nn.Module):
- """ Definition of sine generator
- SineGen(samp_rate, harmonic_num = 0,
- sine_amp = 0.1, noise_std = 0.003,
- voiced_threshold = 0,
- flag_for_pulse=False)
- samp_rate: sampling rate in Hz
- harmonic_num: number of harmonic overtones (default 0)
- sine_amp: amplitude of sine-wavefrom (default 0.1)
- noise_std: std of Gaussian noise (default 0.003)
- voiced_thoreshold: F0 threshold for U/V classification (default 0)
- flag_for_pulse: this SinGen is used inside PulseGen (default False)
- Note: when flag_for_pulse is True, the first time step of a voiced
- segment is always sin(np.pi) or cos(0)
- """
- def __init__(self, samp_rate, harmonic_num=0,
- sine_amp=0.1, noise_std=0.003,
- voiced_threshold=0):
- super(SineGen, self).__init__()
- self.sine_amp = sine_amp
- self.noise_std = noise_std
- self.harmonic_num = harmonic_num
- self.sampling_rate = samp_rate
- self.voiced_threshold = voiced_threshold
- def _f02uv(self, f0):
- # generate uv signal
- uv = (f0 > self.voiced_threshold).type(torch.float32)
- return uv
- @torch.no_grad()
- def forward(self, f0):
- """ sine_tensor, uv = forward(f0)
- input F0: tensor(batchsize=1, dim=1, length)
- f0 for unvoiced steps should be 0
- output sine_tensor: tensor(batchsize=1, length, dim)
- output uv: tensor(batchsize=1, length, 1)
- """
- f0 = f0.transpose(1, 2)
- F_mat = torch.zeros((f0.size(0), self.harmonic_num + 1, f0.size(-1))).to(f0.device)
- for i in range(self.harmonic_num + 1):
- F_mat[:, i: i + 1, :] = f0 * (i + 1) / self.sampling_rate
- theta_mat = 2 * np.pi * (torch.cumsum(F_mat, dim=-1) % 1)
- u_dist = Uniform(low=-np.pi, high=np.pi)
- phase_vec = u_dist.sample(sample_shape=(f0.size(0), self.harmonic_num + 1, 1)).to(F_mat.device)
- phase_vec[:, 0, :] = 0
- # generate sine waveforms
- sine_waves = self.sine_amp * torch.sin(theta_mat + phase_vec)
- # generate uv signal
- uv = self._f02uv(f0)
- # noise: for unvoiced should be similar to sine_amp
- # std = self.sine_amp/3 -> max value ~ self.sine_amp
- # . for voiced regions is self.noise_std
- noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3
- noise = noise_amp * torch.randn_like(sine_waves)
- # first: set the unvoiced part to 0 by uv
- # then: additive noise
- sine_waves = sine_waves * uv + noise
- return sine_waves.transpose(1, 2), uv.transpose(1, 2), noise
- class SineGen2(torch.nn.Module):
- """ Definition of sine generator
- SineGen(samp_rate, harmonic_num = 0,
- sine_amp = 0.1, noise_std = 0.003,
- voiced_threshold = 0,
- flag_for_pulse=False)
- samp_rate: sampling rate in Hz
- harmonic_num: number of harmonic overtones (default 0)
- sine_amp: amplitude of sine-wavefrom (default 0.1)
- noise_std: std of Gaussian noise (default 0.003)
- voiced_thoreshold: F0 threshold for U/V classification (default 0)
- flag_for_pulse: this SinGen is used inside PulseGen (default False)
- Note: when flag_for_pulse is True, the first time step of a voiced
- segment is always sin(np.pi) or cos(0)
- """
- def __init__(self, samp_rate, upsample_scale, harmonic_num=0,
- sine_amp=0.1, noise_std=0.003,
- voiced_threshold=0,
- flag_for_pulse=False,
- causal=False):
- super(SineGen2, self).__init__()
- self.sine_amp = sine_amp
- self.noise_std = noise_std
- self.harmonic_num = harmonic_num
- self.dim = self.harmonic_num + 1
- self.sampling_rate = samp_rate
- self.voiced_threshold = voiced_threshold
- self.flag_for_pulse = flag_for_pulse
- self.upsample_scale = upsample_scale
- self.causal = causal
- if causal is True:
- self.rand_ini = torch.rand(1, 9)
- self.rand_ini[:, 0] = 0
- self.sine_waves = torch.rand(1, 300 * 24000, 9)
- def _f02uv(self, f0):
- # generate uv signal
- uv = (f0 > self.voiced_threshold).type(torch.float32)
- return uv
- def _f02sine(self, f0_values):
- """ f0_values: (batchsize, length, dim)
- where dim indicates fundamental tone and overtones
- """
- # convert to F0 in rad. The interger part n can be ignored
- # because 2 * np.pi * n doesn't affect phase
- rad_values = (f0_values / self.sampling_rate) % 1
- # initial phase noise (no noise for fundamental component)
- if self.training is False and self.causal is True:
- rad_values[:, 0, :] = rad_values[:, 0, :] + self.rand_ini.to(rad_values.device)
- else:
- rand_ini = torch.rand(f0_values.shape[0], f0_values.shape[2], device=f0_values.device)
- rand_ini[:, 0] = 0
- rad_values[:, 0, :] = rad_values[:, 0, :] + rand_ini
- # instantanouse phase sine[t] = sin(2*pi \sum_i=1 ^{t} rad)
- if not self.flag_for_pulse:
- rad_values = torch.nn.functional.interpolate(rad_values.transpose(1, 2),
- scale_factor=1 / self.upsample_scale,
- mode="linear").transpose(1, 2)
- phase = torch.cumsum(rad_values, dim=1) * 2 * np.pi
- phase = torch.nn.functional.interpolate(phase.transpose(1, 2) * self.upsample_scale,
- scale_factor=self.upsample_scale, mode="nearest" if self.causal is True else 'linear').transpose(1, 2)
- sines = torch.sin(phase)
- else:
- # If necessary, make sure that the first time step of every
- # voiced segments is sin(pi) or cos(0)
- # This is used for pulse-train generation
- # identify the last time step in unvoiced segments
- uv = self._f02uv(f0_values)
- uv_1 = torch.roll(uv, shifts=-1, dims=1)
- uv_1[:, -1, :] = 1
- u_loc = (uv < 1) * (uv_1 > 0)
- # get the instantanouse phase
- tmp_cumsum = torch.cumsum(rad_values, dim=1)
- # different batch needs to be processed differently
- for idx in range(f0_values.shape[0]):
- temp_sum = tmp_cumsum[idx, u_loc[idx, :, 0], :]
- temp_sum[1:, :] = temp_sum[1:, :] - temp_sum[0:-1, :]
- # stores the accumulation of i.phase within
- # each voiced segments
- tmp_cumsum[idx, :, :] = 0
- tmp_cumsum[idx, u_loc[idx, :, 0], :] = temp_sum
- # rad_values - tmp_cumsum: remove the accumulation of i.phase
- # within the previous voiced segment.
- i_phase = torch.cumsum(rad_values - tmp_cumsum, dim=1)
- # get the sines
- sines = torch.cos(i_phase * 2 * np.pi)
- return sines
- def forward(self, f0):
- """ sine_tensor, uv = forward(f0)
- input F0: tensor(batchsize=1, length, dim=1)
- f0 for unvoiced steps should be 0
- output sine_tensor: tensor(batchsize=1, length, dim)
- output uv: tensor(batchsize=1, length, 1)
- """
- # fundamental component
- fn = torch.multiply(f0, torch.FloatTensor([[range(1, self.harmonic_num + 2)]]).to(f0.device))
- # generate sine waveforms
- sine_waves = self._f02sine(fn) * self.sine_amp
- # generate uv signal
- uv = self._f02uv(f0)
- # noise: for unvoiced should be similar to sine_amp
- # std = self.sine_amp/3 -> max value ~ self.sine_amp
- # . for voiced regions is self.noise_std
- noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3
- if self.training is False and self.causal is True:
- noise = noise_amp * self.sine_waves[:, :sine_waves.shape[1]].to(sine_waves.device)
- else:
- noise = noise_amp * torch.randn_like(sine_waves)
- # first: set the unvoiced part to 0 by uv
- # then: additive noise
- sine_waves = sine_waves * uv + noise
- return sine_waves, uv, noise
- class SourceModuleHnNSF(torch.nn.Module):
- """ SourceModule for hn-nsf
- SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1,
- add_noise_std=0.003, voiced_threshod=0)
- sampling_rate: sampling_rate in Hz
- harmonic_num: number of harmonic above F0 (default: 0)
- sine_amp: amplitude of sine source signal (default: 0.1)
- add_noise_std: std of additive Gaussian noise (default: 0.003)
- note that amplitude of noise in unvoiced is decided
- by sine_amp
- voiced_threshold: threhold to set U/V given F0 (default: 0)
- Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
- F0_sampled (batchsize, length, 1)
- Sine_source (batchsize, length, 1)
- noise_source (batchsize, length 1)
- uv (batchsize, length, 1)
- """
- def __init__(self, sampling_rate, upsample_scale, harmonic_num=0, sine_amp=0.1,
- add_noise_std=0.003, voiced_threshod=0, sinegen_type='1', causal=False):
- super(SourceModuleHnNSF, self).__init__()
- self.sine_amp = sine_amp
- self.noise_std = add_noise_std
- # to produce sine waveforms
- if sinegen_type == '1':
- self.l_sin_gen = SineGen(sampling_rate, harmonic_num, sine_amp, add_noise_std, voiced_threshod)
- else:
- self.l_sin_gen = SineGen2(sampling_rate, upsample_scale, harmonic_num, sine_amp, add_noise_std, voiced_threshod, causal=causal)
- # to merge source harmonics into a single excitation
- self.l_linear = torch.nn.Linear(harmonic_num + 1, 1)
- self.l_tanh = torch.nn.Tanh()
- self.causal = causal
- if causal is True:
- self.uv = torch.rand(1, 300 * 24000, 1)
- def forward(self, x):
- """
- Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
- F0_sampled (batchsize, length, 1)
- Sine_source (batchsize, length, 1)
- noise_source (batchsize, length 1)
- """
- # source for harmonic branch
- with torch.no_grad():
- sine_wavs, uv, _ = self.l_sin_gen(x)
- sine_merge = self.l_tanh(self.l_linear(sine_wavs))
- # source for noise branch, in the same shape as uv
- if self.training is False and self.causal is True:
- noise = self.uv[:, :uv.shape[1]] * self.sine_amp / 3
- else:
- noise = torch.randn_like(uv) * self.sine_amp / 3
- return sine_merge, noise, uv
- class HiFTGenerator(nn.Module):
- """
- HiFTNet Generator: Neural Source Filter + ISTFTNet
- https://arxiv.org/abs/2309.09493
- """
- def __init__(
- self,
- in_channels: int = 80,
- base_channels: int = 512,
- nb_harmonics: int = 8,
- sampling_rate: int = 22050,
- nsf_alpha: float = 0.1,
- nsf_sigma: float = 0.003,
- nsf_voiced_threshold: float = 10,
- upsample_rates: List[int] = [8, 8],
- upsample_kernel_sizes: List[int] = [16, 16],
- istft_params: Dict[str, int] = {"n_fft": 16, "hop_len": 4},
- resblock_kernel_sizes: List[int] = [3, 7, 11],
- resblock_dilation_sizes: List[List[int]] = [[1, 3, 5], [1, 3, 5], [1, 3, 5]],
- source_resblock_kernel_sizes: List[int] = [7, 11],
- source_resblock_dilation_sizes: List[List[int]] = [[1, 3, 5], [1, 3, 5]],
- lrelu_slope: float = 0.1,
- audio_limit: float = 0.99,
- f0_predictor: torch.nn.Module = None,
- ):
- super(HiFTGenerator, self).__init__()
- self.out_channels = 1
- self.nb_harmonics = nb_harmonics
- self.sampling_rate = sampling_rate
- self.istft_params = istft_params
- self.lrelu_slope = lrelu_slope
- self.audio_limit = audio_limit
- self.num_kernels = len(resblock_kernel_sizes)
- self.num_upsamples = len(upsample_rates)
- # NOTE in CosyVoice2, we use the original SineGen implementation
- self.m_source = SourceModuleHnNSF(
- sampling_rate=sampling_rate,
- upsample_scale=np.prod(upsample_rates) * istft_params["hop_len"],
- harmonic_num=nb_harmonics,
- sine_amp=nsf_alpha,
- add_noise_std=nsf_sigma,
- voiced_threshod=nsf_voiced_threshold,
- sinegen_type='1' if self.sampling_rate == 22050 else '2',
- causal=False)
- self.f0_upsamp = torch.nn.Upsample(scale_factor=np.prod(upsample_rates) * istft_params["hop_len"])
- self.conv_pre = weight_norm(
- Conv1d(in_channels, base_channels, 7, 1, padding=3)
- )
- # Up
- self.ups = nn.ModuleList()
- for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
- self.ups.append(
- weight_norm(
- ConvTranspose1d(
- base_channels // (2**i),
- base_channels // (2**(i + 1)),
- k,
- u,
- padding=(k - u) // 2,
- )
- )
- )
- # Down
- self.source_downs = nn.ModuleList()
- self.source_resblocks = nn.ModuleList()
- downsample_rates = [1] + upsample_rates[::-1][:-1]
- downsample_cum_rates = np.cumprod(downsample_rates)
- for i, (u, k, d) in enumerate(zip(downsample_cum_rates[::-1], source_resblock_kernel_sizes, source_resblock_dilation_sizes)):
- if u == 1:
- self.source_downs.append(
- Conv1d(istft_params["n_fft"] + 2, base_channels // (2 ** (i + 1)), 1, 1)
- )
- else:
- self.source_downs.append(
- Conv1d(istft_params["n_fft"] + 2, base_channels // (2 ** (i + 1)), u * 2, u, padding=(u // 2))
- )
- self.source_resblocks.append(
- ResBlock(base_channels // (2 ** (i + 1)), k, d)
- )
- self.resblocks = nn.ModuleList()
- for i in range(len(self.ups)):
- ch = base_channels // (2**(i + 1))
- for _, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)):
- self.resblocks.append(ResBlock(ch, k, d))
- self.conv_post = weight_norm(Conv1d(ch, istft_params["n_fft"] + 2, 7, 1, padding=3))
- self.ups.apply(init_weights)
- self.conv_post.apply(init_weights)
- self.reflection_pad = nn.ReflectionPad1d((1, 0))
- self.stft_window = torch.from_numpy(get_window("hann", istft_params["n_fft"], fftbins=True).astype(np.float32))
- self.f0_predictor = f0_predictor
- def remove_weight_norm(self):
- print('Removing weight norm...')
- for l in self.ups:
- remove_weight_norm(l)
- for l in self.resblocks:
- l.remove_weight_norm()
- remove_weight_norm(self.conv_pre)
- remove_weight_norm(self.conv_post)
- self.m_source.remove_weight_norm()
- for l in self.source_downs:
- remove_weight_norm(l)
- for l in self.source_resblocks:
- l.remove_weight_norm()
- def _stft(self, x):
- spec = torch.stft(
- x,
- self.istft_params["n_fft"], self.istft_params["hop_len"], self.istft_params["n_fft"], window=self.stft_window.to(x.device),
- return_complex=True)
- spec = torch.view_as_real(spec) # [B, F, TT, 2]
- return spec[..., 0], spec[..., 1]
- def _istft(self, magnitude, phase):
- magnitude = torch.clip(magnitude, max=1e2)
- real = magnitude * torch.cos(phase)
- img = magnitude * torch.sin(phase)
- inverse_transform = torch.istft(torch.complex(real, img), self.istft_params["n_fft"], self.istft_params["hop_len"],
- self.istft_params["n_fft"], window=self.stft_window.to(magnitude.device))
- return inverse_transform
- def decode(self, x: torch.Tensor, s: torch.Tensor = torch.zeros(1, 1, 0)) -> torch.Tensor:
- s_stft_real, s_stft_imag = self._stft(s.squeeze(1))
- s_stft = torch.cat([s_stft_real, s_stft_imag], dim=1)
- x = self.conv_pre(x)
- for i in range(self.num_upsamples):
- x = F.leaky_relu(x, self.lrelu_slope)
- x = self.ups[i](x)
- if i == self.num_upsamples - 1:
- x = self.reflection_pad(x)
- # fusion
- si = self.source_downs[i](s_stft)
- si = self.source_resblocks[i](si)
- x = x + si
- xs = None
- for j in range(self.num_kernels):
- if xs is None:
- xs = self.resblocks[i * self.num_kernels + j](x)
- else:
- xs += self.resblocks[i * self.num_kernels + j](x)
- x = xs / self.num_kernels
- x = F.leaky_relu(x)
- x = self.conv_post(x)
- magnitude = torch.exp(x[:, :self.istft_params["n_fft"] // 2 + 1, :])
- phase = torch.sin(x[:, self.istft_params["n_fft"] // 2 + 1:, :]) # actually, sin is redundancy
- x = self._istft(magnitude, phase)
- x = torch.clamp(x, -self.audio_limit, self.audio_limit)
- return x
- def forward(
- self,
- batch: dict,
- device: torch.device,
- ) -> Dict[str, Optional[torch.Tensor]]:
- speech_feat = batch['speech_feat'].transpose(1, 2).to(device)
- # mel->f0
- f0 = self.f0_predictor(speech_feat)
- # f0->source
- s = self.f0_upsamp(f0[:, None]).transpose(1, 2) # bs,n,t
- s, _, _ = self.m_source(s)
- s = s.transpose(1, 2)
- # mel+source->speech
- generated_speech = self.decode(x=speech_feat, s=s)
- return generated_speech, f0
- @torch.inference_mode()
- def inference(self, speech_feat: torch.Tensor, cache_source: torch.Tensor = torch.zeros(1, 1, 0)) -> torch.Tensor:
- # mel->f0
- f0 = self.f0_predictor(speech_feat)
- # f0->source
- s = self.f0_upsamp(f0[:, None]).transpose(1, 2) # bs,n,t
- s, _, _ = self.m_source(s)
- s = s.transpose(1, 2)
- # use cache_source to avoid glitch
- if cache_source.shape[2] != 0:
- s[:, :, :cache_source.shape[2]] = cache_source
- generated_speech = self.decode(x=speech_feat, s=s)
- return generated_speech, s
- class CausalHiFTGenerator(HiFTGenerator):
- """
- HiFTNet Generator: Neural Source Filter + ISTFTNet
- https://arxiv.org/abs/2309.09493
- """
- def __init__(
- self,
- in_channels: int = 80,
- base_channels: int = 512,
- nb_harmonics: int = 8,
- sampling_rate: int = 22050,
- nsf_alpha: float = 0.1,
- nsf_sigma: float = 0.003,
- nsf_voiced_threshold: float = 10,
- upsample_rates: List[int] = [8, 8],
- upsample_kernel_sizes: List[int] = [16, 16],
- istft_params: Dict[str, int] = {"n_fft": 16, "hop_len": 4},
- resblock_kernel_sizes: List[int] = [3, 7, 11],
- resblock_dilation_sizes: List[List[int]] = [[1, 3, 5], [1, 3, 5], [1, 3, 5]],
- source_resblock_kernel_sizes: List[int] = [7, 11],
- source_resblock_dilation_sizes: List[List[int]] = [[1, 3, 5], [1, 3, 5]],
- lrelu_slope: float = 0.1,
- audio_limit: float = 0.99,
- conv_pre_look_right: int = 4,
- f0_predictor: torch.nn.Module = None,
- ):
- torch.nn.Module.__init__(self)
- self.out_channels = 1
- self.nb_harmonics = nb_harmonics
- self.sampling_rate = sampling_rate
- self.istft_params = istft_params
- self.lrelu_slope = lrelu_slope
- self.audio_limit = audio_limit
- self.num_kernels = len(resblock_kernel_sizes)
- self.num_upsamples = len(upsample_rates)
- self.m_source = SourceModuleHnNSF(
- sampling_rate=sampling_rate,
- upsample_scale=np.prod(upsample_rates) * istft_params["hop_len"],
- harmonic_num=nb_harmonics,
- sine_amp=nsf_alpha,
- add_noise_std=nsf_sigma,
- voiced_threshod=nsf_voiced_threshold,
- sinegen_type='1' if self.sampling_rate == 22050 else '2',
- causal=True)
- self.upsample_rates = upsample_rates
- self.f0_upsamp = torch.nn.Upsample(scale_factor=np.prod(upsample_rates) * istft_params["hop_len"])
- self.conv_pre = weight_norm(
- CausalConv1d(in_channels, base_channels, conv_pre_look_right + 1, 1, causal_type='right')
- )
- # Up
- self.ups = nn.ModuleList()
- for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
- self.ups.append(
- weight_norm(
- CausalConv1dUpsample(
- base_channels // (2**i),
- base_channels // (2**(i + 1)),
- k,
- u,
- )
- )
- )
- # Down
- self.source_downs = nn.ModuleList()
- self.source_resblocks = nn.ModuleList()
- downsample_rates = [1] + upsample_rates[::-1][:-1]
- downsample_cum_rates = np.cumprod(downsample_rates)
- for i, (u, k, d) in enumerate(zip(downsample_cum_rates[::-1], source_resblock_kernel_sizes, source_resblock_dilation_sizes)):
- if u == 1:
- self.source_downs.append(
- CausalConv1d(istft_params["n_fft"] + 2, base_channels // (2 ** (i + 1)), 1, 1, causal_type='left')
- )
- else:
- self.source_downs.append(
- CausalConv1dDownSample(istft_params["n_fft"] + 2, base_channels // (2 ** (i + 1)), u * 2, u)
- )
- self.source_resblocks.append(
- ResBlock(base_channels // (2 ** (i + 1)), k, d, causal=True)
- )
- self.resblocks = nn.ModuleList()
- for i in range(len(self.ups)):
- ch = base_channels // (2**(i + 1))
- for _, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)):
- self.resblocks.append(ResBlock(ch, k, d, causal=True))
- self.conv_post = weight_norm(CausalConv1d(ch, istft_params["n_fft"] + 2, 7, 1, causal_type='left'))
- self.ups.apply(init_weights)
- self.conv_post.apply(init_weights)
- self.reflection_pad = nn.ReflectionPad1d((1, 0))
- self.stft_window = torch.from_numpy(get_window("hann", istft_params["n_fft"], fftbins=True).astype(np.float32))
- self.conv_pre_look_right = conv_pre_look_right
- self.f0_predictor = f0_predictor
- def decode(self, x: torch.Tensor, s: torch.Tensor = torch.zeros(1, 1, 0), finalize: bool = True) -> torch.Tensor:
- s_stft_real, s_stft_imag = self._stft(s.squeeze(1))
- if finalize is True:
- x = self.conv_pre(x)
- else:
- x = self.conv_pre(x[:, :, :-self.conv_pre_look_right], x[:, :, -self.conv_pre_look_right:])
- s_stft_real = s_stft_real[:, :, :-int(np.prod(self.upsample_rates) * self.conv_pre_look_right)]
- s_stft_imag = s_stft_imag[:, :, :-int(np.prod(self.upsample_rates) * self.conv_pre_look_right)]
- s_stft = torch.cat([s_stft_real, s_stft_imag], dim=1)
- for i in range(self.num_upsamples):
- x = F.leaky_relu(x, self.lrelu_slope)
- x = self.ups[i](x)
- if i == self.num_upsamples - 1:
- x = self.reflection_pad(x)
- # fusion
- si = self.source_downs[i](s_stft)
- si = self.source_resblocks[i](si)
- x = x + si
- xs = None
- for j in range(self.num_kernels):
- if xs is None:
- xs = self.resblocks[i * self.num_kernels + j](x)
- else:
- xs += self.resblocks[i * self.num_kernels + j](x)
- x = xs / self.num_kernels
- x = F.leaky_relu(x)
- x = self.conv_post(x)
- magnitude = torch.exp(x[:, :self.istft_params["n_fft"] // 2 + 1, :])
- phase = torch.sin(x[:, self.istft_params["n_fft"] // 2 + 1:, :]) # actually, sin is redundancy
- x = self._istft(magnitude, phase)
- if finalize is False:
- x = x[:, :-int(np.prod(self.upsample_rates) * self.istft_params['hop_len'])]
- x = torch.clamp(x, -self.audio_limit, self.audio_limit)
- return x
- @torch.inference_mode()
- def inference(self, speech_feat: torch.Tensor, finalize: bool = True) -> torch.Tensor:
- # mel->f0 NOTE f0_predictor precision is crucial for causal inference, move self.f0_predictor to cpu if necessary
- self.f0_predictor.to('cpu')
- f0 = self.f0_predictor(speech_feat.cpu(), finalize=finalize).to(speech_feat)
- # f0->source
- s = self.f0_upsamp(f0[:, None]).transpose(1, 2) # bs,n,t
- s, _, _ = self.m_source(s)
- s = s.transpose(1, 2)
- if finalize is True:
- generated_speech = self.decode(x=speech_feat, s=s, finalize=finalize)
- else:
- generated_speech = self.decode(x=speech_feat[:, :, :-self.f0_predictor.condnet[0].causal_padding], s=s, finalize=finalize)
- return generated_speech, s
- if __name__ == '__main__':
- torch.backends.cudnn.deterministic = True
- torch.backends.cudnn.benchmark = False
- from hyperpyyaml import load_hyperpyyaml
- with open('./pretrained_models/Fun-CosyVoice3-0.5B/cosyvoice3.yaml', 'r') as f:
- configs = load_hyperpyyaml(f, overrides={'llm': None, 'flow': None})
- model = configs['hift']
- device = 'cuda' if torch.cuda.is_available() else 'cpu'
- model.to(device)
- model.eval()
- max_len, chunk_size, context_size = 300, 30, 8
- mel = torch.rand(1, 80, max_len).to(device)
- pred_gt, _ = model.inference(mel)
- for i in range(0, max_len, chunk_size):
- finalize = True if i + chunk_size + context_size >= max_len else False
- pred_chunk, _ = model.inference(mel[:, :, : i + chunk_size + context_size], finalize=finalize)
- pred_chunk = pred_chunk[:, i * 480:]
- print((pred_gt[:, i * 480:i * 480 + pred_chunk.shape[1]] - pred_chunk).abs().max().item())
|