| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505 |
- # SPDX-FileCopyrightText: Copyright (c) 2025, NVIDIA CORPORATION. All rights reserved.
- # SPDX-License-Identifier: Apache-2.0
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """ Example Usage
- CUDA_VISIBLE_DEVICES=0 \
- python3 token2wav.py --enable-trt || exit 1
- """
- import torch
- # from flashcosyvoice.modules.flow import CausalMaskedDiffWithXvec
- from flashcosyvoice.modules.hifigan import HiFTGenerator
- from flashcosyvoice.utils.audio import mel_spectrogram
- import torchaudio.compliance.kaldi as kaldi
- import onnxruntime
- import s3tokenizer
- from torch.utils.data import DataLoader
- from datasets import load_dataset
- import torchaudio
- import os
- import logging
- import argparse
- import queue
- import time
- import numpy as np
- from hyperpyyaml import load_hyperpyyaml
- def fade_in_out(fade_in_mel:torch.Tensor, fade_out_mel:torch.Tensor, window:torch.Tensor):
- """perform fade_in_out in tensor style
- """
- mel_overlap_len = int(window.shape[0] / 2)
- fade_in_mel = fade_in_mel.clone()
- fade_in_mel[..., :mel_overlap_len] = \
- fade_in_mel[..., :mel_overlap_len] * window[:mel_overlap_len] + \
- fade_out_mel[..., -mel_overlap_len:] * window[mel_overlap_len:]
- return fade_in_mel
- def convert_onnx_to_trt(trt_model, trt_kwargs, onnx_model, dtype):
- import tensorrt as trt
- logging.info("Converting onnx to trt...")
- network_flags = 1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)
- logger = trt.Logger(trt.Logger.INFO)
- builder = trt.Builder(logger)
- network = builder.create_network(network_flags)
- parser = trt.OnnxParser(network, logger)
- config = builder.create_builder_config()
- # config.set_memory_pool_limit(trt.MemoryPoolType.WORKSPACE, 1 << 32) # 4GB
- if dtype == torch.float16:
- config.set_flag(trt.BuilderFlag.FP16)
- elif dtype == torch.bfloat16:
- config.set_flag(trt.BuilderFlag.BF16)
- elif dtype == torch.float32:
- config.set_flag(trt.BuilderFlag.FP32)
- profile = builder.create_optimization_profile()
- # load onnx model
- with open(onnx_model, "rb") as f:
- if not parser.parse(f.read()):
- for error in range(parser.num_errors):
- print(parser.get_error(error))
- raise ValueError('failed to parse {}'.format(onnx_model))
- # set input shapes
- for i in range(len(trt_kwargs['input_names'])):
- profile.set_shape(trt_kwargs['input_names'][i], trt_kwargs['min_shape'][i], trt_kwargs['opt_shape'][i], trt_kwargs['max_shape'][i])
- if dtype == torch.float16:
- tensor_dtype = trt.DataType.HALF
- elif dtype == torch.bfloat16:
- tensor_dtype = trt.DataType.BF16
- elif dtype == torch.float32:
- tensor_dtype = trt.DataType.FLOAT
- else:
- raise ValueError('invalid dtype {}'.format(dtype))
- # set input and output data type
- for i in range(network.num_inputs):
- input_tensor = network.get_input(i)
- input_tensor.dtype = tensor_dtype
- for i in range(network.num_outputs):
- output_tensor = network.get_output(i)
- output_tensor.dtype = tensor_dtype
- config.add_optimization_profile(profile)
- engine_bytes = builder.build_serialized_network(network, config)
- # save trt engine
- with open(trt_model, "wb") as f:
- f.write(engine_bytes)
- logging.info("Succesfully convert onnx to trt...")
- class TrtContextWrapper:
- def __init__(self, trt_engine, trt_concurrent=1, device='cuda:0'):
- self.trt_context_pool = queue.Queue(maxsize=trt_concurrent)
- self.trt_engine = trt_engine
- self.device = device
- for _ in range(trt_concurrent):
- trt_context = trt_engine.create_execution_context()
- trt_stream = torch.cuda.stream(torch.cuda.Stream(torch.device(device)))
- assert trt_context is not None, 'failed to create trt context, maybe not enough CUDA memory, try reduce current trt concurrent {}'.format(trt_concurrent)
- self.trt_context_pool.put([trt_context, trt_stream])
- assert self.trt_context_pool.empty() is False, 'no avaialbe estimator context'
- def acquire_estimator(self):
- return self.trt_context_pool.get(), self.trt_engine
- def release_estimator(self, context, stream):
- self.trt_context_pool.put([context, stream])
- class CosyVoice2_Token2Wav(torch.nn.Module):
- def __init__(self, model_dir: str, enable_trt: bool = False, device_id: int = 0, streaming: bool = False, dtype: torch.dtype = torch.float16):
- super().__init__()
- self.device_id = device_id
- self.device = f"cuda:{device_id}"
- with open(f"{model_dir}/flow.yaml", "r") as f:
- configs = load_hyperpyyaml(f)
- self.flow = configs['flow']
- self.dtype = dtype
- self.flow.to(self.dtype)
- self.flow.load_state_dict(torch.load(f"{model_dir}/flow.pt", map_location="cpu", weights_only=True), strict=True)
- self.flow.to(self.device).eval()
- self.hift = HiFTGenerator()
- hift_state_dict = {k.replace('generator.', ''): v for k, v in torch.load(f"{model_dir}/hift.pt", map_location="cpu", weights_only=True).items()}
- self.hift.load_state_dict(hift_state_dict, strict=True)
- self.hift.to(self.device).eval()
- option = onnxruntime.SessionOptions()
- option.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL
- option.intra_op_num_threads = 1
- self.spk_model = onnxruntime.InferenceSession(f"{model_dir}/campplus.onnx", sess_options=option,
- providers=["CPUExecutionProvider"])
-
- self.audio_tokenizer = s3tokenizer.load_model(f"{model_dir}/speech_tokenizer_v2_25hz.onnx").to(self.device).eval()
- gpu="l20"
- if enable_trt:
- if streaming:
- self.load_trt(f'{model_dir}/flow.decoder.estimator.{self.dtype}.dynamic_batch.chunk.{gpu}.plan',
- f'{model_dir}/flow.decoder.estimator.chunk.fp32.dynamic_batch.simplify.onnx',
- 1,
- self.dtype, streaming)
- else:
- self.load_trt(f'{model_dir}/flow.decoder.estimator.{self.dtype}.dynamic_batch.{gpu}.plan',
- f'{model_dir}/flow.decoder.estimator.fp32.dynamic_batch.onnx',
- 1,
- self.dtype)
- self.load_spk_trt(f'{model_dir}/campplus.{gpu}.fp32.trt',
- f'{model_dir}/campplus.onnx',
- 1,
- False)
- self.streaming_flow_cache = {}
- self.speaker_cache = {}
- self.mel_cache_len = 8 # hard-coded, 160ms
- self.source_cache_len = int(self.mel_cache_len * 480) # 50hz mel -> 24kHz wave
- self.speech_window = torch.from_numpy(np.hamming(2 * self.source_cache_len)).cuda()
- # hifigan cache for streaming tts
- self.hift_cache_dict = {}
- def forward_spk_embedding(self, spk_feat):
- if isinstance(self.spk_model, onnxruntime.InferenceSession):
- return self.spk_model.run(
- None, {self.spk_model.get_inputs()[0].name: spk_feat.unsqueeze(dim=0).cpu().numpy()}
- )[0].flatten().tolist()
- else:
- [spk_model, stream], trt_engine = self.spk_model.acquire_estimator()
- # NOTE need to synchronize when switching stream
- with torch.cuda.device(self.device_id):
- torch.cuda.current_stream().synchronize()
- spk_feat = spk_feat.unsqueeze(dim=0).to(self.device)
- batch_size = spk_feat.size(0)
- with stream:
- spk_model.set_input_shape('input', (batch_size, spk_feat.size(1), 80))
- output_tensor = torch.empty((batch_size, 192), device=spk_feat.device)
- data_ptrs = [spk_feat.contiguous().data_ptr(),
- output_tensor.contiguous().data_ptr()]
- for i, j in enumerate(data_ptrs):
- spk_model.set_tensor_address(trt_engine.get_tensor_name(i), j)
- # run trt engine
- assert spk_model.execute_async_v3(torch.cuda.current_stream().cuda_stream) is True
- torch.cuda.current_stream().synchronize()
- self.spk_model.release_estimator(spk_model, stream)
- return output_tensor.cpu().numpy().flatten().tolist()
- def load_spk_trt(self, spk_model, spk_onnx_model, trt_concurrent=1, fp16=True):
- if not os.path.exists(spk_model) or os.path.getsize(spk_model) == 0:
- trt_kwargs = self.get_spk_trt_kwargs()
- convert_onnx_to_trt(spk_model, trt_kwargs, spk_onnx_model, fp16)
- import tensorrt as trt
- with open(spk_model, 'rb') as f:
- spk_engine = trt.Runtime(trt.Logger(trt.Logger.INFO)).deserialize_cuda_engine(f.read())
- assert spk_engine is not None, 'failed to load trt {}'.format(spk_model)
- self.spk_model = TrtContextWrapper(spk_engine, trt_concurrent=trt_concurrent, device=self.device)
- def get_spk_trt_kwargs(self):
- min_shape = [(1, 4, 80)]
- opt_shape = [(1, 500, 80)]
- max_shape = [(1, 3000, 80)]
- input_names = ["input"]
- return {'min_shape': min_shape, 'opt_shape': opt_shape, 'max_shape': max_shape, 'input_names': input_names}
- def load_trt(self, flow_decoder_estimator_model, flow_decoder_onnx_model, trt_concurrent=1, dtype=torch.float16, streaming=False):
- assert torch.cuda.is_available(), 'tensorrt only supports gpu!'
- if not os.path.exists(flow_decoder_estimator_model) or os.path.getsize(flow_decoder_estimator_model) == 0:
- opt_batch_size = 2
- max_batch_size = 16
- if streaming:
- opt_batch_size, max_batch_size = 1, 1 # only support batch size 1 for streaming tts
- trt_kwargs = self.get_trt_kwargs_dynamic_batch(opt_batch_size=opt_batch_size, max_batch_size=max_batch_size, streaming=streaming)
- convert_onnx_to_trt(flow_decoder_estimator_model, trt_kwargs, flow_decoder_onnx_model, dtype)
- del self.flow.decoder.estimator
- import tensorrt as trt
- with open(flow_decoder_estimator_model, 'rb') as f:
- estimator_engine = trt.Runtime(trt.Logger(trt.Logger.INFO)).deserialize_cuda_engine(f.read())
- assert estimator_engine is not None, 'failed to load trt {}'.format(flow_decoder_estimator_model)
- self.flow.decoder.estimator = TrtContextWrapper(estimator_engine, trt_concurrent=trt_concurrent, device=self.device)
- def get_trt_kwargs_dynamic_batch(self, opt_batch_size=2, max_batch_size=64, streaming=False):
- if streaming:
- min_shape = [(2, 80, 4), (2, 80, 4), (2, 80, 4), (2,), (2, 80), (16, 2, 1024, 2), (16, 2, 8, 0, 128)]
- opt_shape = [(opt_batch_size*2, 80, 500), (opt_batch_size*2, 80, 500), (opt_batch_size*2, 80, 500), (opt_batch_size*2,), (opt_batch_size*2, 80), (16, opt_batch_size*2, 1024, 2), (16, opt_batch_size*2, 8, 100, 128)]
- max_shape = [(max_batch_size*2, 80, 3000), (max_batch_size*2, 80, 3000), (max_batch_size*2, 80, 3000), (max_batch_size*2,), (max_batch_size*2, 80), (16, max_batch_size*2, 1024, 2), (16, max_batch_size*2, 8, 1000, 128)]
- input_names = ["x", "mu", "cond", "t", "spks", "cnn_cache", "att_cache"]
- else:
- min_shape = [(2, 80, 4), (2, 1, 4), (2, 80, 4), (2, 80, 4), (2,), (2, 80)]
- opt_shape = [(opt_batch_size*2, 80, 500), (opt_batch_size*2, 1, 500), (opt_batch_size*2, 80, 500), (opt_batch_size*2, 80, 500), (opt_batch_size*2,), (opt_batch_size*2, 80)]
- max_shape = [(max_batch_size*2, 80, 3000), (max_batch_size*2, 1, 3000), (max_batch_size*2, 80, 3000), (max_batch_size*2, 80, 3000), (max_batch_size*2,), (max_batch_size*2, 80)]
- input_names = ["x", "mask", "mu", "cond", "t", "spks"]
- return {'min_shape': min_shape, 'opt_shape': opt_shape, 'max_shape': max_shape, 'input_names': input_names}
- def prompt_audio_tokenization(self, prompt_audios_list: list[torch.Tensor]) -> list[list[int]]:
- prompt_speech_tokens_list, prompt_speech_mels_list = [], []
- for audio in prompt_audios_list:
- assert len(audio.shape) == 1
- log_mel = s3tokenizer.log_mel_spectrogram(audio) # [num_mels, T]
- prompt_speech_mels_list.append(log_mel)
- prompt_mels_for_llm, prompt_mels_lens_for_llm = s3tokenizer.padding(prompt_speech_mels_list)
- prompt_speech_tokens, prompt_speech_tokens_lens = self.audio_tokenizer.quantize(
- prompt_mels_for_llm.to(self.device), prompt_mels_lens_for_llm.to(self.device)
- )
- for i in range(len(prompt_speech_tokens)):
- speech_tokens_i = prompt_speech_tokens[i, :prompt_speech_tokens_lens[i].item()].tolist()
- prompt_speech_tokens_list.append(speech_tokens_i)
- return prompt_speech_tokens_list
-
- def get_spk_emb(self, prompt_audios_list: list[torch.Tensor]) -> torch.Tensor:
- spk_emb_for_flow = []
- for audio in prompt_audios_list:
- assert len(audio.shape) == 1
- spk_feat = kaldi.fbank(audio.unsqueeze(0), num_mel_bins=80, dither=0, sample_frequency=16000)
- spk_feat = spk_feat - spk_feat.mean(dim=0, keepdim=True)
- spk_emb = self.forward_spk_embedding(spk_feat)
- spk_emb_for_flow.append(spk_emb)
- spk_emb_for_flow = torch.tensor(spk_emb_for_flow)
- if self.dtype != torch.float32:
- spk_emb_for_flow = spk_emb_for_flow.to(self.dtype)
- return spk_emb_for_flow
-
- def get_prompt_mels(self, prompt_audios_list: list[torch.Tensor], prompt_audios_sample_rate: list[int]):
- prompt_mels_for_flow = []
- prompt_mels_lens_for_flow = []
- for audio, sample_rate in zip(prompt_audios_list, prompt_audios_sample_rate):
- assert len(audio.shape) == 1
- audio = audio.unsqueeze(0)
- if sample_rate != 24000:
- audio = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=24000)(audio)
- mel = mel_spectrogram(audio).transpose(1, 2).squeeze(0) # [T, num_mels]
- mel_len = mel.shape[0]
- prompt_mels_for_flow.append(mel)
- prompt_mels_lens_for_flow.append(mel_len)
- prompt_mels_for_flow = torch.nn.utils.rnn.pad_sequence(prompt_mels_for_flow, batch_first=True, padding_value=0) # [B, T', num_mels=80]
- prompt_mels_lens_for_flow = torch.tensor(prompt_mels_lens_for_flow)
- return prompt_mels_for_flow, prompt_mels_lens_for_flow
-
- def forward_flow(self, prompt_speech_tokens_list: list[list[int]], generated_speech_tokens_list: list[list[int]], prompt_mels_for_flow: torch.Tensor, prompt_mels_lens_for_flow: torch.Tensor, spk_emb_for_flow: torch.Tensor):
- batch_size = prompt_mels_for_flow.shape[0]
- flow_inputs = []
- flow_inputs_lens = []
- for prompt_speech_tokens, generated_speech_tokens in zip(prompt_speech_tokens_list, generated_speech_tokens_list):
- flow_inputs.append(torch.tensor(prompt_speech_tokens + generated_speech_tokens))
- flow_inputs_lens.append(len(prompt_speech_tokens) + len(generated_speech_tokens))
- flow_inputs = torch.nn.utils.rnn.pad_sequence(flow_inputs, batch_first=True, padding_value=0)
- flow_inputs_lens = torch.tensor(flow_inputs_lens)
- with torch.amp.autocast(self.device, dtype=torch.float16):
- generated_mels, generated_mels_lens = self.flow.inference(
- flow_inputs.to(self.device), flow_inputs_lens.to(self.device),
- prompt_mels_for_flow.to(self.device), prompt_mels_lens_for_flow.to(self.device), spk_emb_for_flow.to(self.device), 10
- )
- return generated_mels, generated_mels_lens
- def forward_hift(self, generated_mels: torch.Tensor, generated_mels_lens: torch.Tensor, prompt_mels_lens_for_flow: torch.Tensor):
- batch_size = generated_mels.shape[0]
- generated_wavs = []
- for i in range(batch_size):
- mel = generated_mels[i, :, prompt_mels_lens_for_flow[i].item():generated_mels_lens[i].item()].unsqueeze(0)
- wav, _ = self.hift(speech_feat=mel)
- generated_wavs.append(wav)
- return generated_wavs
- @torch.inference_mode()
- def forward(
- self, generated_speech_tokens_list: list[list[int]], prompt_audios_list: list[torch.Tensor], prompt_audios_sample_rate: list[int]
- ):
- # assert all item in prompt_audios_sample_rate is 16000
- assert all(sample_rate == 16000 for sample_rate in prompt_audios_sample_rate)
-
- prompt_speech_tokens_list, prompt_mels_for_flow, prompt_mels_lens_for_flow, spk_emb_for_flow = self.prepare_prompt_audio(prompt_audios_list, prompt_audios_sample_rate)
- generated_mels, generated_mels_lens = self.forward_flow(prompt_speech_tokens_list, generated_speech_tokens_list, prompt_mels_for_flow, prompt_mels_lens_for_flow, spk_emb_for_flow)
- generated_wavs = self.forward_hift(generated_mels, generated_mels_lens, prompt_mels_lens_for_flow)
-
- return generated_wavs
- def prepare_prompt_audio(
- self, prompt_audios_list: list[torch.Tensor], prompt_audios_sample_rate: list[int]
- ):
- # assert all item in prompt_audios_sample_rate is 16000
- assert all(sample_rate == 16000 for sample_rate in prompt_audios_sample_rate)
-
- prompt_speech_tokens_list = self.prompt_audio_tokenization(prompt_audios_list)
- prompt_mels_for_flow, prompt_mels_lens_for_flow = self.get_prompt_mels(prompt_audios_list, prompt_audios_sample_rate)
- spk_emb_for_flow = self.get_spk_emb(prompt_audios_list)
-
- return prompt_speech_tokens_list, prompt_mels_for_flow, prompt_mels_lens_for_flow, spk_emb_for_flow
- def get_prompt_audio_cache_for_streaming_tts(
- self, prompt_speech_tokens_list, prompt_mels_for_flow, prompt_mels_lens_for_flow, spk_emb_for_flow
- ):
- assert len(prompt_speech_tokens_list) == 1, "only support batch size 1 for streaming tts"
- for i, prompt_speech_tokens in enumerate(prompt_speech_tokens_list):
- prompt_speech_tokens_list[i] = torch.tensor(prompt_speech_tokens + prompt_speech_tokens_list[i][:3])
- prompt_speech_tokens_tensor = torch.nn.utils.rnn.pad_sequence(prompt_speech_tokens_list, batch_first=True, padding_value=0)
- cache = self.flow.setup_cache(
- prompt_speech_tokens_tensor.to(self.device),
- prompt_mels_for_flow.to(self.device),
- spk_emb_for_flow.to(self.device),
- n_timesteps=10
- )
- new_cache = {k: v.clone() for k, v in cache.items()}
- # Hack: this is a hack to avoid in-place changes to the cache['estimator_att_cache'] and cache['estimator_cnn_cache']
- return new_cache
- @torch.inference_mode()
- def forward_streaming(
- self, generated_speech_tokens: list[int], last_chunk: bool, request_id: str, speaker_id: str, prompt_audio: torch.Tensor = None, prompt_audio_sample_rate: int = 16000
- ):
- if speaker_id not in self.speaker_cache:
- assert prompt_audio is not None, "prompt_audio is required for new speaker"
- assert prompt_audio_sample_rate == 16000
- prompt_speech_tokens_list, prompt_mels_for_flow, prompt_mels_lens_for_flow, spk_emb_for_flow = self.prepare_prompt_audio([prompt_audio], [prompt_audio_sample_rate])
- token_len = min(int(prompt_mels_for_flow.shape[1] / 2), len(prompt_speech_tokens_list[0]))
- prompt_mels_for_flow = prompt_mels_for_flow[:, :2 * token_len].contiguous()
- prompt_speech_tokens_list[0] = prompt_speech_tokens_list[0][:token_len]
- prompt_audio_dict = {'spk_emb_for_flow': spk_emb_for_flow, 'prompt_mels_for_flow': prompt_mels_for_flow}
- cache_dict = self.get_prompt_audio_cache_for_streaming_tts(prompt_speech_tokens_list, prompt_mels_for_flow, prompt_mels_lens_for_flow, spk_emb_for_flow)
- self.speaker_cache[speaker_id] = {'prompt_audio_dict': prompt_audio_dict, 'cache_dict': cache_dict}
- print(f"speaker_id {speaker_id} added to cache")
- if request_id not in self.streaming_flow_cache:
- self.streaming_flow_cache[request_id] = {k: v.clone() for k, v in self.speaker_cache[speaker_id]['cache_dict'].items()}
- self.hift_cache_dict[request_id] = dict(
- mel = torch.zeros(1, 80, 0, device='cuda'),
- source = torch.zeros(1, 1, 0, device='cuda'),
- speech = torch.zeros(1, 0, device='cuda'),
- )
- # else:
- # for k, v in self.streaming_flow_cache[request_id].items():
- # print(f"k: {k}, v: {v.shape}, dtype: {v.dtype}")
- # for k, v in self.hift_cache_dict[request_id].items():
- # print(f"k: {k}, v: {v.shape}, dtype: {v.dtype}")
- # breakpoint()
- current_request_cache = self.streaming_flow_cache[request_id]
- current_prompt_audio_dict = self.speaker_cache[speaker_id]['prompt_audio_dict']
- generated_speech_tokens = torch.tensor([generated_speech_tokens], dtype=torch.int32, device='cuda')
- chunk_mel, new_streaming_flow_cache = self.flow.inference_chunk(
- token=generated_speech_tokens,
- spk=current_prompt_audio_dict['spk_emb_for_flow'].to(self.device),
- cache=current_request_cache,
- last_chunk=last_chunk,
- n_timesteps=10,
- )
- self.streaming_flow_cache[request_id] = new_streaming_flow_cache
- if self.streaming_flow_cache[request_id]['estimator_att_cache'].shape[4] > (current_prompt_audio_dict['prompt_mels_for_flow'].shape[1] + 100):
- self.streaming_flow_cache[request_id]['estimator_att_cache'] = torch.cat([
- self.streaming_flow_cache[request_id]['estimator_att_cache'][:, :, :, :, :current_prompt_audio_dict['prompt_mels_for_flow'].shape[1]],
- self.streaming_flow_cache[request_id]['estimator_att_cache'][:, :, :, :, -100:],
- ], dim=4)
- hift_cache_mel = self.hift_cache_dict[request_id]['mel'].clone()
- hift_cache_source = self.hift_cache_dict[request_id]['source'].clone()
- hift_cache_speech = self.hift_cache_dict[request_id]['speech'].clone()
- mel = torch.concat([hift_cache_mel, chunk_mel], dim=2).clone()
- speech, source = self.hift(mel, hift_cache_source)
- # overlap speech smooth
- if hift_cache_speech.shape[-1] > 0:
- speech = fade_in_out(speech, hift_cache_speech, self.speech_window)
- # update vocoder cache
- self.hift_cache_dict[request_id] = dict(
- mel = mel[..., -self.mel_cache_len:].clone().detach(),
- source = source[:, :, -self.source_cache_len:].clone().detach(),
- speech = speech[:, -self.source_cache_len:].clone().detach(),
- )
- if not last_chunk:
- speech = speech[:, :-self.source_cache_len]
- if last_chunk:
- assert request_id in self.streaming_flow_cache
- self.streaming_flow_cache.pop(request_id)
- self.hift_cache_dict.pop(request_id)
- return speech
- def collate_fn(batch):
- ids, generated_speech_tokens_list, prompt_audios_list, prompt_audios_sample_rate = [], [], [], []
- for i, item in enumerate(batch):
- generated_speech_tokens_list.append(item['target_audio_cosy2_tokens'])
- audio = torch.from_numpy(item['prompt_audio']['array']).float()
- prompt_audios_list.append(audio)
- prompt_audios_sample_rate.append(item['prompt_audio']['sampling_rate'])
- ids.append(item['id'])
- return ids, generated_speech_tokens_list, prompt_audios_list, prompt_audios_sample_rate
- def get_args():
- parser = argparse.ArgumentParser()
- parser.add_argument("--enable-trt", action="store_true")
- parser.add_argument("--model-dir", type=str, default="./Step-Audio-2-mini/token2wav")
- parser.add_argument("--batch-size", type=int, default=1)
- parser.add_argument("--output-dir", type=str, default="generated_wavs")
- parser.add_argument("--huggingface-dataset-split", type=str, default="wenetspeech4tts")
- parser.add_argument("--warmup", type=int, default=3, help="Number of warmup epochs, performance statistics will only be collected from the last epoch")
- return parser.parse_args()
- if __name__ == "__main__":
- args = get_args()
- model = CosyVoice2_Token2Wav(model_dir=args.model_dir, enable_trt=args.enable_trt)
- # mkdir output_dir if not exists
- if not os.path.exists(args.output_dir):
- os.makedirs(args.output_dir)
- dataset_name = "yuekai/seed_tts_cosy2"
- dataset = load_dataset(dataset_name, split=args.huggingface_dataset_split, trust_remote_code=True)
- data_loader = DataLoader(dataset, batch_size=args.batch_size, shuffle=False, collate_fn=collate_fn, num_workers=0)
-
-
- for epoch in range(args.warmup):
- start_time = time.time()
-
- for batch in data_loader:
- ids, generated_speech_tokens_list, prompt_audios_list, prompt_audios_sample_rate = batch
- generated_wavs = model(generated_speech_tokens_list, prompt_audios_list, prompt_audios_sample_rate)
-
- for id, wav in zip(ids, generated_wavs):
- torchaudio.save(f"{args.output_dir}/{id}.wav", wav.cpu(), 24000)
-
- end_time = time.time()
- epoch_time = end_time - start_time
- print(f"Measurement epoch time taken: {epoch_time:.4f} seconds")
|