| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453 |
- # Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu)
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import os
- from typing import Generator
- import torch
- import numpy as np
- import threading
- import time
- from torch.nn import functional as F
- from contextlib import nullcontext
- import uuid
- from cosyvoice.utils.common import fade_in_out
- from cosyvoice.utils.file_utils import convert_onnx_to_trt
- class CosyVoiceModel:
- def __init__(self,
- llm: torch.nn.Module,
- flow: torch.nn.Module,
- hift: torch.nn.Module,
- fp16: bool):
- self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
- self.llm = llm
- self.flow = flow
- self.hift = hift
- self.fp16 = fp16
- if self.fp16 is True:
- self.llm.half()
- self.flow.half()
- self.token_min_hop_len = 2 * self.flow.input_frame_rate
- self.token_max_hop_len = 4 * self.flow.input_frame_rate
- self.token_overlap_len = 20
- # mel fade in out
- self.mel_overlap_len = int(self.token_overlap_len / self.flow.input_frame_rate * 22050 / 256)
- self.mel_window = np.hamming(2 * self.mel_overlap_len)
- # hift cache
- self.mel_cache_len = 20
- self.source_cache_len = int(self.mel_cache_len * 256)
- # speech fade in out
- self.speech_window = np.hamming(2 * self.source_cache_len)
- # rtf and decoding related
- self.stream_scale_factor = 1
- assert self.stream_scale_factor >= 1, 'stream_scale_factor should be greater than 1, change it according to your actual rtf'
- self.llm_context = torch.cuda.stream(torch.cuda.Stream(self.device)) if torch.cuda.is_available() else nullcontext()
- self.lock = threading.Lock()
- # dict used to store session related variable
- self.tts_speech_token_dict = {}
- self.llm_end_dict = {}
- self.mel_overlap_dict = {}
- self.flow_cache_dict = {}
- self.hift_cache_dict = {}
- def load(self, llm_model, flow_model, hift_model):
- self.llm.load_state_dict(torch.load(llm_model, map_location=self.device), strict=True)
- self.llm.to(self.device).eval()
- self.flow.load_state_dict(torch.load(flow_model, map_location=self.device), strict=True)
- self.flow.to(self.device).eval()
- # in case hift_model is a hifigan model
- hift_state_dict = {k.replace('generator.', ''): v for k, v in torch.load(hift_model, map_location=self.device).items()}
- self.hift.load_state_dict(hift_state_dict, strict=True)
- self.hift.to(self.device).eval()
- def load_jit(self, llm_text_encoder_model, llm_llm_model, flow_encoder_model):
- llm_text_encoder = torch.jit.load(llm_text_encoder_model, map_location=self.device)
- self.llm.text_encoder = llm_text_encoder
- llm_llm = torch.jit.load(llm_llm_model, map_location=self.device)
- self.llm.llm = llm_llm
- flow_encoder = torch.jit.load(flow_encoder_model, map_location=self.device)
- self.flow.encoder = flow_encoder
- def load_trt(self, flow_decoder_estimator_model, flow_decoder_onnx_model, fp16):
- assert torch.cuda.is_available(), 'tensorrt only supports gpu!'
- if not os.path.exists(flow_decoder_estimator_model):
- convert_onnx_to_trt(flow_decoder_estimator_model, self.get_trt_kwargs(), flow_decoder_onnx_model, fp16)
- if os.path.getsize(flow_decoder_estimator_model) == 0:
- raise ValueError('{} is empty file, delete it and export again!'.format(flow_decoder_estimator_model))
- del self.flow.decoder.estimator
- import tensorrt as trt
- with open(flow_decoder_estimator_model, 'rb') as f:
- self.flow.decoder.estimator_engine = trt.Runtime(trt.Logger(trt.Logger.INFO)).deserialize_cuda_engine(f.read())
- assert self.flow.decoder.estimator_engine is not None, 'failed to load trt {}'.format(flow_decoder_estimator_model)
- self.flow.decoder.estimator = self.flow.decoder.estimator_engine.create_execution_context()
- def get_trt_kwargs(self):
- min_shape = [(2, 80, 4), (2, 1, 4), (2, 80, 4), (2, 80, 4)]
- opt_shape = [(2, 80, 200), (2, 1, 200), (2, 80, 200), (2, 80, 200)]
- max_shape = [(2, 80, 3000), (2, 1, 3000), (2, 80, 3000), (2, 80, 3000)]
- input_names = ["x", "mask", "mu", "cond"]
- return {'min_shape': min_shape, 'opt_shape': opt_shape, 'max_shape': max_shape, 'input_names': input_names}
- def llm_job(self, text, prompt_text, llm_prompt_speech_token, llm_embedding, uuid):
- with self.llm_context, torch.cuda.amp.autocast(self.fp16):
- if isinstance(text, Generator):
- assert isinstance(self, CosyVoice2Model), 'streaming input text is only implemented for CosyVoice2!'
- for i in self.llm.inference_bistream(text=text,
- prompt_text=prompt_text.to(self.device),
- prompt_text_len=torch.tensor([prompt_text.shape[1]], dtype=torch.int32).to(self.device),
- prompt_speech_token=llm_prompt_speech_token.to(self.device),
- prompt_speech_token_len=torch.tensor([llm_prompt_speech_token.shape[1]], dtype=torch.int32).to(self.device),
- embedding=llm_embedding.to(self.device)):
- self.tts_speech_token_dict[uuid].append(i)
- else:
- for i in self.llm.inference(text=text.to(self.device),
- text_len=torch.tensor([text.shape[1]], dtype=torch.int32).to(self.device),
- prompt_text=prompt_text.to(self.device),
- prompt_text_len=torch.tensor([prompt_text.shape[1]], dtype=torch.int32).to(self.device),
- prompt_speech_token=llm_prompt_speech_token.to(self.device),
- prompt_speech_token_len=torch.tensor([llm_prompt_speech_token.shape[1]], dtype=torch.int32).to(self.device),
- embedding=llm_embedding.to(self.device)):
- self.tts_speech_token_dict[uuid].append(i)
- self.llm_end_dict[uuid] = True
- def token2wav(self, token, prompt_token, prompt_feat, embedding, uuid, finalize=False, speed=1.0):
- with torch.cuda.amp.autocast(self.fp16):
- tts_mel, self.flow_cache_dict[uuid] = self.flow.inference(token=token.to(self.device),
- token_len=torch.tensor([token.shape[1]], dtype=torch.int32).to(self.device),
- prompt_token=prompt_token.to(self.device),
- prompt_token_len=torch.tensor([prompt_token.shape[1]], dtype=torch.int32).to(self.device),
- prompt_feat=prompt_feat.to(self.device),
- prompt_feat_len=torch.tensor([prompt_feat.shape[1]], dtype=torch.int32).to(self.device),
- embedding=embedding.to(self.device),
- flow_cache=self.flow_cache_dict[uuid])
- # mel overlap fade in out
- if self.mel_overlap_dict[uuid].shape[2] != 0:
- tts_mel = fade_in_out(tts_mel, self.mel_overlap_dict[uuid], self.mel_window)
- # append hift cache
- if self.hift_cache_dict[uuid] is not None:
- hift_cache_mel, hift_cache_source = self.hift_cache_dict[uuid]['mel'], self.hift_cache_dict[uuid]['source']
- tts_mel = torch.concat([hift_cache_mel, tts_mel], dim=2)
- else:
- hift_cache_source = torch.zeros(1, 1, 0)
- # keep overlap mel and hift cache
- if finalize is False:
- self.mel_overlap_dict[uuid] = tts_mel[:, :, -self.mel_overlap_len:]
- tts_mel = tts_mel[:, :, :-self.mel_overlap_len]
- tts_speech, tts_source = self.hift.inference(speech_feat=tts_mel, cache_source=hift_cache_source)
- if self.hift_cache_dict[uuid] is not None:
- tts_speech = fade_in_out(tts_speech, self.hift_cache_dict[uuid]['speech'], self.speech_window)
- self.hift_cache_dict[uuid] = {'mel': tts_mel[:, :, -self.mel_cache_len:],
- 'source': tts_source[:, :, -self.source_cache_len:],
- 'speech': tts_speech[:, -self.source_cache_len:]}
- tts_speech = tts_speech[:, :-self.source_cache_len]
- else:
- if speed != 1.0:
- assert self.hift_cache_dict[uuid] is None, 'speed change only support non-stream inference mode'
- tts_mel = F.interpolate(tts_mel, size=int(tts_mel.shape[2] / speed), mode='linear')
- tts_speech, tts_source = self.hift.inference(speech_feat=tts_mel, cache_source=hift_cache_source)
- if self.hift_cache_dict[uuid] is not None:
- tts_speech = fade_in_out(tts_speech, self.hift_cache_dict[uuid]['speech'], self.speech_window)
- return tts_speech
- def tts(self, text, flow_embedding, llm_embedding=torch.zeros(0, 192),
- prompt_text=torch.zeros(1, 0, dtype=torch.int32),
- llm_prompt_speech_token=torch.zeros(1, 0, dtype=torch.int32),
- flow_prompt_speech_token=torch.zeros(1, 0, dtype=torch.int32),
- prompt_speech_feat=torch.zeros(1, 0, 80), stream=False, speed=1.0, **kwargs):
- # this_uuid is used to track variables related to this inference thread
- this_uuid = str(uuid.uuid1())
- with self.lock:
- self.tts_speech_token_dict[this_uuid], self.llm_end_dict[this_uuid] = [], False
- self.hift_cache_dict[this_uuid] = None
- self.mel_overlap_dict[this_uuid] = torch.zeros(1, 80, 0)
- self.flow_cache_dict[this_uuid] = torch.zeros(1, 80, 0, 2)
- p = threading.Thread(target=self.llm_job, args=(text, prompt_text, llm_prompt_speech_token, llm_embedding, this_uuid))
- p.start()
- if stream is True:
- token_hop_len = self.token_min_hop_len
- while True:
- time.sleep(0.1)
- if len(self.tts_speech_token_dict[this_uuid]) >= token_hop_len + self.token_overlap_len:
- this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid][:token_hop_len + self.token_overlap_len]) \
- .unsqueeze(dim=0)
- this_tts_speech = self.token2wav(token=this_tts_speech_token,
- prompt_token=flow_prompt_speech_token,
- prompt_feat=prompt_speech_feat,
- embedding=flow_embedding,
- uuid=this_uuid,
- finalize=False)
- yield {'tts_speech': this_tts_speech.cpu()}
- with self.lock:
- self.tts_speech_token_dict[this_uuid] = self.tts_speech_token_dict[this_uuid][token_hop_len:]
- # increase token_hop_len for better speech quality
- token_hop_len = min(self.token_max_hop_len, int(token_hop_len * self.stream_scale_factor))
- if self.llm_end_dict[this_uuid] is True and len(self.tts_speech_token_dict[this_uuid]) < token_hop_len + self.token_overlap_len:
- break
- p.join()
- # deal with remain tokens, make sure inference remain token len equals token_hop_len when cache_speech is not None
- this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid]).unsqueeze(dim=0)
- this_tts_speech = self.token2wav(token=this_tts_speech_token,
- prompt_token=flow_prompt_speech_token,
- prompt_feat=prompt_speech_feat,
- embedding=flow_embedding,
- uuid=this_uuid,
- finalize=True)
- yield {'tts_speech': this_tts_speech.cpu()}
- else:
- # deal with all tokens
- p.join()
- this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid]).unsqueeze(dim=0)
- this_tts_speech = self.token2wav(token=this_tts_speech_token,
- prompt_token=flow_prompt_speech_token,
- prompt_feat=prompt_speech_feat,
- embedding=flow_embedding,
- uuid=this_uuid,
- finalize=True,
- speed=speed)
- yield {'tts_speech': this_tts_speech.cpu()}
- with self.lock:
- self.tts_speech_token_dict.pop(this_uuid)
- self.llm_end_dict.pop(this_uuid)
- self.mel_overlap_dict.pop(this_uuid)
- self.hift_cache_dict.pop(this_uuid)
- self.flow_cache_dict.pop(this_uuid)
- torch.cuda.empty_cache()
- def vc(self, source_speech_token, flow_prompt_speech_token, prompt_speech_feat, flow_embedding, stream=False, speed=1.0, **kwargs):
- # this_uuid is used to track variables related to this inference thread
- this_uuid = str(uuid.uuid1())
- with self.lock:
- self.tts_speech_token_dict[this_uuid], self.llm_end_dict[this_uuid] = source_speech_token.flatten().tolist(), True
- self.hift_cache_dict[this_uuid] = None
- self.mel_overlap_dict[this_uuid] = torch.zeros(1, 80, 0)
- self.flow_cache_dict[this_uuid] = torch.zeros(1, 80, 0, 2)
- if stream is True:
- token_hop_len = self.token_min_hop_len
- while True:
- if len(self.tts_speech_token_dict[this_uuid]) >= token_hop_len + self.token_overlap_len:
- this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid][:token_hop_len + self.token_overlap_len]) \
- .unsqueeze(dim=0)
- this_tts_speech = self.token2wav(token=this_tts_speech_token,
- prompt_token=flow_prompt_speech_token,
- prompt_feat=prompt_speech_feat,
- embedding=flow_embedding,
- uuid=this_uuid,
- finalize=False)
- yield {'tts_speech': this_tts_speech.cpu()}
- with self.lock:
- self.tts_speech_token_dict[this_uuid] = self.tts_speech_token_dict[this_uuid][token_hop_len:]
- # increase token_hop_len for better speech quality
- token_hop_len = min(self.token_max_hop_len, int(token_hop_len * self.stream_scale_factor))
- if self.llm_end_dict[this_uuid] is True and len(self.tts_speech_token_dict[this_uuid]) < token_hop_len + self.token_overlap_len:
- break
- # deal with remain tokens, make sure inference remain token len equals token_hop_len when cache_speech is not None
- this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid]).unsqueeze(dim=0)
- this_tts_speech = self.token2wav(token=this_tts_speech_token,
- prompt_token=flow_prompt_speech_token,
- prompt_feat=prompt_speech_feat,
- embedding=flow_embedding,
- uuid=this_uuid,
- finalize=True)
- yield {'tts_speech': this_tts_speech.cpu()}
- else:
- # deal with all tokens
- this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid]).unsqueeze(dim=0)
- this_tts_speech = self.token2wav(token=this_tts_speech_token,
- prompt_token=flow_prompt_speech_token,
- prompt_feat=prompt_speech_feat,
- embedding=flow_embedding,
- uuid=this_uuid,
- finalize=True,
- speed=speed)
- yield {'tts_speech': this_tts_speech.cpu()}
- with self.lock:
- self.tts_speech_token_dict.pop(this_uuid)
- self.llm_end_dict.pop(this_uuid)
- self.mel_overlap_dict.pop(this_uuid)
- self.hift_cache_dict.pop(this_uuid)
- self.flow_cache_dict.pop(this_uuid)
- torch.cuda.empty_cache()
- class CosyVoice2Model(CosyVoiceModel):
- def __init__(self,
- llm: torch.nn.Module,
- flow: torch.nn.Module,
- hift: torch.nn.Module,
- fp16: bool,
- use_flow_cache: bool):
- self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
- self.llm = llm
- self.flow = flow
- self.hift = hift
- self.fp16 = fp16
- self.use_flow_cache = use_flow_cache
- if self.fp16 is True:
- self.llm.half()
- self.flow.half()
- # stream related params, check examples/libritts/cosyvoice2/conf/cosyvoice2.yaml
- self.token_hop_len = 25
- self.flow_decoder_required_cache_size = 0 if use_flow_cache is False else 1 * self.token_hop_len * self.flow.token_mel_ratio
- # hift cache
- self.mel_cache_len = 8
- self.source_cache_len = int(self.mel_cache_len * 480)
- # speech fade in out
- self.speech_window = np.hamming(2 * self.source_cache_len)
- # rtf and decoding related
- self.llm_context = torch.cuda.stream(torch.cuda.Stream(self.device)) if torch.cuda.is_available() else nullcontext()
- self.lock = threading.Lock()
- # dict used to store session related variable
- self.tts_speech_token_dict = {}
- self.llm_end_dict = {}
- self.flow_cache_dict = {}
- self.hift_cache_dict = {}
- def init_flow_cache(self):
- encoder_cache = {'offset': 0,
- 'pre_lookahead_layer_conv2_cache': torch.zeros(1, 512, 2).to(self.device),
- 'encoders_kv_cache': torch.zeros(6, 1, 8, 0, 64 * 2).to(self.device),
- 'upsample_offset': 0,
- 'upsample_conv_cache': torch.zeros(1, 512, 4).to(self.device),
- 'upsample_kv_cache': torch.zeros(4, 1, 8, 0, 64 * 2).to(self.device)}
- decoder_cache = {'offset': 0,
- 'down_blocks_conv_cache': torch.zeros(10, 1, 2, 832, 2).to(self.device),
- 'down_blocks_kv_cache': torch.zeros(10, 1, 4, 2, self.flow_decoder_required_cache_size, 512, 2).to(self.device),
- 'mid_blocks_conv_cache': torch.zeros(10, 12, 2, 512, 2).to(self.device),
- 'mid_blocks_kv_cache': torch.zeros(10, 12, 4, 2, self.flow_decoder_required_cache_size, 512, 2).to(self.device),
- 'up_blocks_conv_cache': torch.zeros(10, 1, 2, 1024, 2).to(self.device),
- 'up_blocks_kv_cache': torch.zeros(10, 1, 4, 2, self.flow_decoder_required_cache_size, 512, 2).to(self.device),
- 'final_blocks_conv_cache': torch.zeros(10, 2, 256, 2).to(self.device)}
- if self.fp16 is True:
- for cache in [encoder_cache, decoder_cache]:
- for k, v in cache.items():
- if isinstance(v, torch.Tensor):
- cache[k] = v.half()
- cache = {'encoder_cache': encoder_cache, 'decoder_cache': decoder_cache}
- return cache
- def load_jit(self, flow_encoder_model):
- flow_encoder = torch.jit.load(flow_encoder_model, map_location=self.device)
- self.flow.encoder = flow_encoder
- def get_trt_kwargs(self):
- min_shape = [(2, 80, 4), (2, 1, 4), (2, 80, 4), (2, 80, 4), (1, 4, 2, 0, 512, 2), (12, 4, 2, 0, 512, 2), (1, 4, 2, 0, 512, 2)]
- opt_shape = [(2, 80, 200), (2, 1, 200), (2, 80, 200), (2, 80, 200), (1, 4, 2, 100, 512, 2), (12, 4, 2, 100, 512, 2), (1, 4, 2, 100, 512, 2)]
- max_shape = [(2, 80, 1500), (2, 1, 1500), (2, 80, 1500), (2, 80, 1500), (1, 4, 2, 200, 512, 2), (12, 4, 2, 200, 512, 2), (1, 4, 2, 200, 512, 2)]
- input_names = ["x", "mask", "mu", "cond", 'down_blocks_kv_cache', 'mid_blocks_kv_cache', 'up_blocks_kv_cache']
- assert self.use_flow_cache is True, "get_trt_kwargs is set for flow cache mode. If you want to use trt with use_flow_cache=False, please set higher max_shape"
- return {'min_shape': min_shape, 'opt_shape': opt_shape, 'max_shape': max_shape, 'input_names': input_names}
- def token2wav(self, token, prompt_token, prompt_feat, embedding, uuid, finalize=False, speed=1.0):
- with torch.cuda.amp.autocast(self.fp16):
- tts_mel, self.flow_cache_dict[uuid] = self.flow.inference(token=token.to(self.device),
- token_len=torch.tensor([token.shape[1]], dtype=torch.int32).to(self.device),
- prompt_token=prompt_token.to(self.device),
- prompt_token_len=torch.tensor([prompt_token.shape[1]], dtype=torch.int32).to(self.device),
- prompt_feat=prompt_feat.to(self.device),
- prompt_feat_len=torch.tensor([prompt_feat.shape[1]], dtype=torch.int32).to(self.device),
- embedding=embedding.to(self.device),
- cache=self.flow_cache_dict[uuid],
- finalize=finalize)
- # append hift cache
- if self.hift_cache_dict[uuid] is not None:
- hift_cache_mel, hift_cache_source = self.hift_cache_dict[uuid]['mel'], self.hift_cache_dict[uuid]['source']
- tts_mel = torch.concat([hift_cache_mel, tts_mel], dim=2)
- else:
- hift_cache_source = torch.zeros(1, 1, 0)
- # keep overlap mel and hift cache
- if finalize is False:
- tts_speech, tts_source = self.hift.inference(speech_feat=tts_mel, cache_source=hift_cache_source)
- if self.hift_cache_dict[uuid] is not None:
- tts_speech = fade_in_out(tts_speech, self.hift_cache_dict[uuid]['speech'], self.speech_window)
- self.hift_cache_dict[uuid] = {'mel': tts_mel[:, :, -self.mel_cache_len:],
- 'source': tts_source[:, :, -self.source_cache_len:],
- 'speech': tts_speech[:, -self.source_cache_len:]}
- tts_speech = tts_speech[:, :-self.source_cache_len]
- else:
- if speed != 1.0:
- assert self.hift_cache_dict[uuid] is None, 'speed change only support non-stream inference mode'
- tts_mel = F.interpolate(tts_mel, size=int(tts_mel.shape[2] / speed), mode='linear')
- tts_speech, tts_source = self.hift.inference(speech_feat=tts_mel, cache_source=hift_cache_source)
- if self.hift_cache_dict[uuid] is not None:
- tts_speech = fade_in_out(tts_speech, self.hift_cache_dict[uuid]['speech'], self.speech_window)
- return tts_speech
- def tts(self, text, flow_embedding, llm_embedding=torch.zeros(0, 192),
- prompt_text=torch.zeros(1, 0, dtype=torch.int32),
- llm_prompt_speech_token=torch.zeros(1, 0, dtype=torch.int32),
- flow_prompt_speech_token=torch.zeros(1, 0, dtype=torch.int32),
- prompt_speech_feat=torch.zeros(1, 0, 80), stream=False, speed=1.0, **kwargs):
- # this_uuid is used to track variables related to this inference thread
- this_uuid = str(uuid.uuid1())
- with self.lock:
- self.tts_speech_token_dict[this_uuid], self.llm_end_dict[this_uuid] = [], False
- self.hift_cache_dict[this_uuid] = None
- self.flow_cache_dict[this_uuid] = self.init_flow_cache()
- p = threading.Thread(target=self.llm_job, args=(text, prompt_text, llm_prompt_speech_token, llm_embedding, this_uuid))
- p.start()
- if stream is True:
- assert self.use_flow_cache is True, "set use_flow_cache=True if you want to use stream inference to avoid OOM"
- # NOTE in cache mode, trim flow_prompt to same size as flow_decoder_required_cache_size
- flow_prompt_speech_token = flow_prompt_speech_token[:, -int(self.flow_decoder_required_cache_size / self.flow.token_mel_ratio):]
- prompt_speech_feat = prompt_speech_feat[:, -self.flow_decoder_required_cache_size:]
- while True:
- time.sleep(0.1)
- if len(self.tts_speech_token_dict[this_uuid]) >= self.token_hop_len + self.flow.pre_lookahead_len:
- this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid][:self.token_hop_len + self.flow.pre_lookahead_len]).unsqueeze(dim=0)
- this_tts_speech = self.token2wav(token=this_tts_speech_token,
- prompt_token=flow_prompt_speech_token,
- prompt_feat=prompt_speech_feat,
- embedding=flow_embedding,
- uuid=this_uuid,
- finalize=False)
- # NOTE in cache inference mode, we only use flow_prompt_speech_token/prompt_speech_feat in first chunk
- flow_prompt_speech_token = torch.zeros(1, 0, dtype=torch.int32).to(self.device)
- prompt_speech_feat = torch.zeros(1, 0, 80).to(self.device)
- yield {'tts_speech': this_tts_speech.cpu()}
- with self.lock:
- self.tts_speech_token_dict[this_uuid] = self.tts_speech_token_dict[this_uuid][self.token_hop_len:]
- if self.llm_end_dict[this_uuid] is True and len(self.tts_speech_token_dict[this_uuid]) < self.token_hop_len + self.flow.pre_lookahead_len:
- break
- p.join()
- # deal with remain tokens, make sure inference remain token len equals token_hop_len when cache_speech is not None
- this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid]).unsqueeze(dim=0)
- this_tts_speech = self.token2wav(token=this_tts_speech_token,
- prompt_token=flow_prompt_speech_token,
- prompt_feat=prompt_speech_feat,
- embedding=flow_embedding,
- uuid=this_uuid,
- finalize=True)
- yield {'tts_speech': this_tts_speech.cpu()}
- else:
- # deal with all tokens
- assert self.use_flow_cache is False, "set use_flow_cache=False for nonstream inference"
- p.join()
- this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid]).unsqueeze(dim=0)
- this_tts_speech = self.token2wav(token=this_tts_speech_token,
- prompt_token=flow_prompt_speech_token,
- prompt_feat=prompt_speech_feat,
- embedding=flow_embedding,
- uuid=this_uuid,
- finalize=True,
- speed=speed)
- yield {'tts_speech': this_tts_speech.cpu()}
- with self.lock:
- self.tts_speech_token_dict.pop(this_uuid)
- self.llm_end_dict.pop(this_uuid)
- self.hift_cache_dict.pop(this_uuid)
- self.flow_cache_dict.pop(this_uuid)
- torch.cuda.empty_cache()
|