cosyvoice.py 8.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152
  1. # Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu)
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. import os
  15. import time
  16. from tqdm import tqdm
  17. from hyperpyyaml import load_hyperpyyaml
  18. from modelscope import snapshot_download
  19. import torch
  20. from cosyvoice.cli.frontend import CosyVoiceFrontEnd
  21. from cosyvoice.cli.model import CosyVoiceModel, CosyVoice2Model
  22. from cosyvoice.utils.file_utils import logging
  23. class CosyVoice:
  24. def __init__(self, model_dir, load_jit=True, load_onnx=False, fp16=True):
  25. instruct = True if '-Instruct' in model_dir else False
  26. self.model_dir = model_dir
  27. if not os.path.exists(model_dir):
  28. model_dir = snapshot_download(model_dir)
  29. with open('{}/cosyvoice.yaml'.format(model_dir), 'r') as f:
  30. configs = load_hyperpyyaml(f)
  31. self.frontend = CosyVoiceFrontEnd(configs['get_tokenizer'],
  32. configs['feat_extractor'],
  33. '{}/campplus.onnx'.format(model_dir),
  34. '{}/speech_tokenizer_v1.onnx'.format(model_dir),
  35. '{}/spk2info.pt'.format(model_dir),
  36. instruct,
  37. configs['allowed_special'])
  38. if torch.cuda.is_available() is False and (fp16 is True or load_jit is True):
  39. load_jit = False
  40. fp16 = False
  41. logging.warning('cpu do not support fp16 and jit, force set to False')
  42. self.model = CosyVoiceModel(configs['llm'], configs['flow'], configs['hift'], fp16)
  43. self.model.load('{}/llm.pt'.format(model_dir),
  44. '{}/flow.pt'.format(model_dir),
  45. '{}/hift.pt'.format(model_dir))
  46. if load_jit:
  47. self.model.load_jit('{}/llm.text_encoder.fp16.zip'.format(model_dir),
  48. '{}/llm.llm.fp16.zip'.format(model_dir),
  49. '{}/flow.encoder.fp32.zip'.format(model_dir))
  50. if load_onnx:
  51. self.model.load_onnx('{}/flow.decoder.estimator.fp32.onnx'.format(model_dir))
  52. del configs
  53. def list_avaliable_spks(self):
  54. spks = list(self.frontend.spk2info.keys())
  55. return spks
  56. def inference_sft(self, tts_text, spk_id, stream=False, speed=1.0):
  57. for i in tqdm(self.frontend.text_normalize(tts_text, split=True)):
  58. model_input = self.frontend.frontend_sft(i, spk_id)
  59. start_time = time.time()
  60. logging.info('synthesis text {}'.format(i))
  61. for model_output in self.model.tts(**model_input, stream=stream, speed=speed):
  62. speech_len = model_output['tts_speech'].shape[1] / 22050
  63. logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
  64. yield model_output
  65. start_time = time.time()
  66. def inference_zero_shot(self, tts_text, prompt_text, prompt_speech_16k, stream=False, speed=1.0):
  67. prompt_text = self.frontend.text_normalize(prompt_text, split=False)
  68. for i in tqdm(self.frontend.text_normalize(tts_text, split=True)):
  69. if len(i) < 0.5 * len(prompt_text):
  70. logging.warning('synthesis text {} too short than prompt text {}, this may lead to bad performance'.format(i, prompt_text))
  71. model_input = self.frontend.frontend_zero_shot(i, prompt_text, prompt_speech_16k)
  72. start_time = time.time()
  73. logging.info('synthesis text {}'.format(i))
  74. for model_output in self.model.tts(**model_input, stream=stream, speed=speed):
  75. speech_len = model_output['tts_speech'].shape[1] / 22050
  76. logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
  77. yield model_output
  78. start_time = time.time()
  79. def inference_cross_lingual(self, tts_text, prompt_speech_16k, stream=False, speed=1.0):
  80. if self.frontend.instruct is True:
  81. raise ValueError('{} do not support cross_lingual inference'.format(self.model_dir))
  82. for i in tqdm(self.frontend.text_normalize(tts_text, split=True)):
  83. model_input = self.frontend.frontend_cross_lingual(i, prompt_speech_16k)
  84. start_time = time.time()
  85. logging.info('synthesis text {}'.format(i))
  86. for model_output in self.model.tts(**model_input, stream=stream, speed=speed):
  87. speech_len = model_output['tts_speech'].shape[1] / 22050
  88. logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
  89. yield model_output
  90. start_time = time.time()
  91. def inference_instruct(self, tts_text, spk_id, instruct_text, stream=False, speed=1.0):
  92. if self.frontend.instruct is False:
  93. raise ValueError('{} do not support instruct inference'.format(self.model_dir))
  94. instruct_text = self.frontend.text_normalize(instruct_text, split=False)
  95. for i in tqdm(self.frontend.text_normalize(tts_text, split=True)):
  96. model_input = self.frontend.frontend_instruct(i, spk_id, instruct_text)
  97. start_time = time.time()
  98. logging.info('synthesis text {}'.format(i))
  99. for model_output in self.model.tts(**model_input, stream=stream, speed=speed):
  100. speech_len = model_output['tts_speech'].shape[1] / 22050
  101. logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
  102. yield model_output
  103. start_time = time.time()
  104. def inference_vc(self, source_speech_16k, prompt_speech_16k, stream=False, speed=1.0):
  105. model_input = self.frontend.frontend_vc(source_speech_16k, prompt_speech_16k)
  106. start_time = time.time()
  107. for model_output in self.model.vc(**model_input, stream=stream, speed=speed):
  108. speech_len = model_output['tts_speech'].shape[1] / 22050
  109. logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
  110. yield model_output
  111. start_time = time.time()
  112. class CosyVoice2(CosyVoice):
  113. def __init__(self, model_dir, load_jit=True, load_onnx=False, fp16=True):
  114. instruct = True if '-Instruct' in model_dir else False
  115. self.model_dir = model_dir
  116. if not os.path.exists(model_dir):
  117. model_dir = snapshot_download(model_dir)
  118. with open('{}/cosyvoice.yaml'.format(model_dir), 'r') as f:
  119. configs = load_hyperpyyaml(f)
  120. self.frontend = CosyVoiceFrontEnd(configs['get_tokenizer'],
  121. configs['feat_extractor'],
  122. '{}/campplus.onnx'.format(model_dir),
  123. '{}/speech_tokenizer_v2.onnx'.format(model_dir),
  124. '{}/spk2info.pt'.format(model_dir),
  125. instruct,
  126. configs['allowed_special'])
  127. if torch.cuda.is_available() is False and (fp16 is True or load_jit is True):
  128. load_jit = False
  129. fp16 = False
  130. logging.warning('cpu do not support fp16 and jit, force set to False')
  131. self.model = CosyVoice2Model(configs['llm'], configs['flow'], configs['hift'], fp16)
  132. self.model.load('{}/llm.pt'.format(model_dir),
  133. '{}/flow.pt'.format(model_dir),
  134. '{}/hift.pt'.format(model_dir))
  135. if load_jit:
  136. self.model.load_jit('{}/llm.text_encoder.fp16.zip'.format(model_dir),
  137. '{}/llm.llm.fp16.zip'.format(model_dir),
  138. '{}/flow.encoder.fp32.zip'.format(model_dir))
  139. if load_onnx:
  140. self.model.load_onnx('{}/flow.decoder.estimator.fp32.onnx'.format(model_dir))
  141. del configs