| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153 |
- #!/bin/bash
- # Copyright (c) 2025 NVIDIA (authors: Yuekai Zhang)
- export CUDA_VISIBLE_DEVICES=0
- cosyvoice_path=/workspace/CosyVoice
- cosyvoice_path=/workspace_yuekai/tts/CosyVoice
- stepaudio2_path=/workspace_yuekai/tts/Step-Audio2
- export PYTHONPATH=${stepaudio2_path}:$PYTHONPATH
- export PYTHONPATH=${cosyvoice_path}:$PYTHONPATH
- export PYTHONPATH=${cosyvoice_path}/third_party/Matcha-TTS:$PYTHONPATH
- stage=$1
- stop_stage=$2
- huggingface_model_local_dir=./cosyvoice2_llm
- model_scope_model_local_dir=./CosyVoice2-0.5B
- trt_dtype=bfloat16
- trt_weights_dir=./trt_weights_${trt_dtype}
- trt_engines_dir=./trt_engines_${trt_dtype}
- model_repo=./model_repo_cosyvoice2
- use_spk2info_cache=False
- if [ $stage -le -1 ] && [ $stop_stage -ge -1 ]; then
- echo "Cloning CosyVoice"
- git clone --recursive https://github.com/FunAudioLLM/CosyVoice.git $cosyvoice_path
- cd $cosyvoice_path
- git submodule update --init --recursive
- cd runtime/triton_trtllm
- fi
- if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then
- echo "Downloading CosyVoice2-0.5B"
- # see https://github.com/nvidia-china-sae/mair-hub/blob/main/rl-tutorial/cosyvoice_llm/pretrained_to_huggingface.py
- huggingface-cli download --local-dir $huggingface_model_local_dir yuekai/cosyvoice2_llm
- modelscope download --model iic/CosyVoice2-0.5B --local_dir $model_scope_model_local_dir
- # download spk2info.pt to directly use cached speech tokens, speech feats, and embeddings
- wget https://raw.githubusercontent.com/qi-hua/async_cosyvoice/main/CosyVoice2-0.5B/spk2info.pt -O $model_scope_model_local_dir/spk2info.pt
- fi
- if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then
- echo "Converting checkpoint to TensorRT weights"
- python3 scripts/convert_checkpoint.py --model_dir $huggingface_model_local_dir \
- --output_dir $trt_weights_dir \
- --dtype $trt_dtype || exit 1
- echo "Building TensorRT engines"
- trtllm-build --checkpoint_dir $trt_weights_dir \
- --output_dir $trt_engines_dir \
- --max_batch_size 16 \
- --max_num_tokens 32768 \
- --gemm_plugin $trt_dtype || exit 1
- echo "Testing TensorRT engines"
- python3 ./scripts/test_llm.py --input_text "你好,请问你叫什么?" \
- --tokenizer_dir $huggingface_model_local_dir \
- --top_k 50 --top_p 0.95 --temperature 0.8 \
- --engine_dir=$trt_engines_dir || exit 1
- fi
- if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
- echo "Creating model repository"
- rm -rf $model_repo
- mkdir -p $model_repo
- cosyvoice2_dir="cosyvoice2"
- cp -r ./model_repo/${cosyvoice2_dir} $model_repo
- cp -r ./model_repo/tensorrt_llm $model_repo
- cp -r ./model_repo/token2wav $model_repo
- if [ $use_spk2info_cache == "False" ]; then
- cp -r ./model_repo/audio_tokenizer $model_repo
- cp -r ./model_repo/speaker_embedding $model_repo
- fi
- ENGINE_PATH=$trt_engines_dir
- MAX_QUEUE_DELAY_MICROSECONDS=0
- MODEL_DIR=$model_scope_model_local_dir
- LLM_TOKENIZER_DIR=$huggingface_model_local_dir
- BLS_INSTANCE_NUM=4
- TRITON_MAX_BATCH_SIZE=16
- DECOUPLED_MODE=True # True for streaming, False for offline
- python3 scripts/fill_template.py -i ${model_repo}/token2wav/config.pbtxt model_dir:${MODEL_DIR},triton_max_batch_size:${TRITON_MAX_BATCH_SIZE},max_queue_delay_microseconds:${MAX_QUEUE_DELAY_MICROSECONDS}
- python3 scripts/fill_template.py -i ${model_repo}/${cosyvoice2_dir}/config.pbtxt model_dir:${MODEL_DIR},bls_instance_num:${BLS_INSTANCE_NUM},llm_tokenizer_dir:${LLM_TOKENIZER_DIR},triton_max_batch_size:${TRITON_MAX_BATCH_SIZE},decoupled_mode:${DECOUPLED_MODE},max_queue_delay_microseconds:${MAX_QUEUE_DELAY_MICROSECONDS}
- python3 scripts/fill_template.py -i ${model_repo}/tensorrt_llm/config.pbtxt triton_backend:tensorrtllm,triton_max_batch_size:${TRITON_MAX_BATCH_SIZE},decoupled_mode:${DECOUPLED_MODE},max_beam_width:1,engine_dir:${ENGINE_PATH},max_tokens_in_paged_kv_cache:2560,max_attention_window_size:2560,kv_cache_free_gpu_mem_fraction:0.5,exclude_input_in_output:True,enable_kv_cache_reuse:False,batching_strategy:inflight_fused_batching,max_queue_delay_microseconds:${MAX_QUEUE_DELAY_MICROSECONDS},encoder_input_features_data_type:TYPE_FP16,logits_datatype:TYPE_FP32
- if [ $use_spk2info_cache == "False" ]; then
- python3 scripts/fill_template.py -i ${model_repo}/audio_tokenizer/config.pbtxt model_dir:${MODEL_DIR},triton_max_batch_size:${TRITON_MAX_BATCH_SIZE},max_queue_delay_microseconds:${MAX_QUEUE_DELAY_MICROSECONDS}
- python3 scripts/fill_template.py -i ${model_repo}/speaker_embedding/config.pbtxt model_dir:${MODEL_DIR},triton_max_batch_size:${TRITON_MAX_BATCH_SIZE},max_queue_delay_microseconds:${MAX_QUEUE_DELAY_MICROSECONDS}
- fi
- fi
- if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
- echo "Starting Triton server"
- tritonserver --model-repository $model_repo
- fi
- if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then
- echo "Single request test http, only work for offline TTS mode"
- python3 client_http.py \
- --reference-audio ./assets/prompt_audio.wav \
- --reference-text "吃燕窝就选燕之屋,本节目由26年专注高品质燕窝的燕之屋冠名播出。豆奶牛奶换着喝,营养更均衡,本节目由豆本豆豆奶特约播出。" \
- --target-text "身临其境,换新体验。塑造开源语音合成新范式,让智能语音更自然。" \
- --model-name cosyvoice2
- fi
- if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then
- echo "Running benchmark client grpc"
- num_task=4
- mode=streaming
- BLS_INSTANCE_NUM=4
- python3 client_grpc.py \
- --server-addr localhost \
- --model-name cosyvoice2 \
- --num-tasks $num_task \
- --mode $mode \
- --use-spk2info-cache $use_spk2info_cache \
- --huggingface-dataset yuekai/seed_tts_cosy2 \
- --log-dir ./log_concurrent_tasks_${num_task}_${mode}_bls_${BLS_INSTANCE_NUM}_spk_cache_${use_spk2info_cache}
- fi
- if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then
- echo "stage 6: Offline inference benchmark"
- n_gpus=1
- datasets=(wenetspeech4tts) # wenetspeech4tts, test_zh, zero_shot_zh
- backend=trtllm # hf, trtllm, vllm
- batch_sizes=(16 8 4 2 1)
- token2wav_batch_size=1
- for batch_size in ${batch_sizes[@]}; do
- for dataset in ${datasets[@]}; do
- output_dir=./${dataset}_${backend}_llm_batch_size_${batch_size}_token2wav_batch_size_${token2wav_batch_size}
- CUDA_VISIBLE_DEVICES=0 \
- python3 offline_inference.py \
- --output-dir $output_dir \
- --llm-model-name-or-path $huggingface_model_local_dir \
- --token2wav-path $model_scope_model_local_dir \
- --backend $backend \
- --batch-size $batch_size --token2wav-batch-size $token2wav_batch_size \
- --engine-dir $trt_engines_dir \
- --split-name ${dataset} || exit 1
- done
- done
- fi
- if [ $stage -le 7 ] && [ $stop_stage -ge 7 ]; then
- python3 benchmark_streaming_token2wav.py --enable-trt
- fi
|