| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455 |
- # Copyright 2025, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
- #
- # Redistribution and use in source and binary forms, with or without
- # modification, are permitted provided that the following conditions
- # are met:
- # * Redistributions of source code must retain the above copyright
- # notice, this list of conditions and the following disclaimer.
- # * Redistributions in binary form must reproduce the above copyright
- # notice, this list of conditions and the following disclaimer in the
- # documentation and/or other materials provided with the distribution.
- # * Neither the name of NVIDIA CORPORATION nor the names of its
- # contributors may be used to endorse or promote products derived
- # from this software without specific prior written permission.
- #
- # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
- # EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
- # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
- # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
- # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
- # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
- # PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
- # OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
- # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- import json
- import math
- import os
- import re
- import threading
- import time
- from typing import Dict, List, Tuple, Optional, Union
- import numpy as np
- import torch
- from torch.utils.dlpack import from_dlpack, to_dlpack
- import triton_python_backend_utils as pb_utils
- from transformers import AutoTokenizer
- import torchaudio
- from matcha.utils.audio import mel_spectrogram
- ORIGINAL_VOCAB_SIZE = 151663
- torch.set_num_threads(1)
- class TritonPythonModel:
- """Triton Python model for Spark TTS.
- This model orchestrates the end-to-end TTS pipeline by coordinating
- between audio tokenizer, LLM, and vocoder components.
- """
- def initialize(self, args):
- """Initialize the model.
- Args:
- args: Dictionary containing model configuration
- """
- self.logger = pb_utils.Logger
- # Parse model parameters
- self.model_config = json.loads(args['model_config'])
- parameters = self.model_config['parameters']
- model_params = {k: v["string_value"] for k, v in parameters.items()}
- self.logger.log_info(f"model_params:{model_params}")
- self.dynamic_chunk_strategy = model_params.get("dynamic_chunk_strategy", "exponential") # "exponential" or "time_based"
- self.logger.log_info(f"Using dynamic chunk strategy: {self.dynamic_chunk_strategy}")
- # Initialize tokenizer
- llm_tokenizer_dir = model_params["llm_tokenizer_dir"]
- self.tokenizer = AutoTokenizer.from_pretrained(llm_tokenizer_dir)
- self.prompt_template = "<|sos|>{input_text}<|task_id|>"
- self.eos_token_id = self.tokenizer.convert_tokens_to_ids("<|eos1|>")
- self.device = torch.device("cuda")
- self.decoupled = pb_utils.using_decoupled_model_transaction_policy(self.model_config)
- self.token_frame_rate = 25
- self.flow_pre_lookahead_len = 3
- self.token_hop_len = 15
- spk_info_path = os.path.join(model_params["model_dir"], "spk2info.pt")
- if not os.path.exists(spk_info_path):
- raise ValueError(f"spk2info.pt not found in {model_params['model_dir']}")
- spk_info = torch.load(spk_info_path, map_location="cpu", weights_only=False)
- self.default_spk_info = spk_info["001"]
- def forward_llm(self, input_ids):
- """
- Prepares the response from the language model based on the provided
- inputs. Creates a `pb_utils.InferenceRequest` object with passed
- `llm_request_inputs` to send to a decoupled TensorRTLLM model.
- For each response from the language model:
- - Checks for errors and raise an exception if any are found.
- - Extracts the "output_ids" tensor from the response.
- - Determines the finish reason based on the presence of the
- end-of-sequence token or reaching the maximum length.
- - Appends the generated token IDs to `output_ids`.
- - If the finish reason is determined, decodes the output IDs to text
- and prepares the final response.
- The final response includes the generated text, finish reason,
- completion tokens, prompt tokens, and total tokens.
- Parameters
- ----------
- - llm_request_inputs (dict): A dictionary containing the inputs for the language model.
- Returns
- -------
- - pb_utils.InferenceResponse: The response object containing the generated text and additional metadata.
- """
- # convert input_ids to numpy, with shape [1, sequence_length]
- input_ids = input_ids.cpu().numpy()
- max_tokens = 750
- input_dict = {
- "request_output_len": np.array([[max_tokens]], dtype=np.int32),
- "end_id": np.array([[self.eos_token_id]], dtype=np.int32),
- "pad_id": np.array([[self.eos_token_id]], dtype=np.int32),
- "streaming": np.array([[self.decoupled]], dtype=np.bool_),
- "runtime_top_p": np.array([[0.95]], dtype=np.float32),
- "runtime_top_k": np.array([[50]], dtype=np.int32),
- "temperature": np.array([[0.8]], dtype=np.float32),
- "repetition_penalty": np.array([[1.1]], dtype=np.float32),
- "random_seed": np.array([[42]], dtype=np.uint64),
- "input_ids": input_ids,
- "input_lengths": np.array([[input_ids.shape[1]]], dtype=np.int32),
- }
- # Convert inputs to Triton tensors
- input_tensor_list = [
- pb_utils.Tensor(k, v) for k, v in input_dict.items()
- ]
- # Create and execute inference request
- llm_request = pb_utils.InferenceRequest(
- model_name="tensorrt_llm",
- requested_output_names=["output_ids", "sequence_length"],
- inputs=input_tensor_list,
- )
- llm_responses = llm_request.exec(decoupled=self.decoupled)
- if self.decoupled:
- for llm_response in llm_responses:
- if llm_response.has_error():
- raise pb_utils.TritonModelException(llm_response.error().message())
- # Extract and process output
- output_ids = pb_utils.get_output_tensor_by_name(
- llm_response, "output_ids").as_numpy()
- seq_lens = pb_utils.get_output_tensor_by_name(
- llm_response, "sequence_length").as_numpy()
- # Get actual output IDs up to the sequence length
- actual_output_ids = output_ids[0][0][:seq_lens[0][0]]
- yield actual_output_ids
- else:
- llm_response = llm_responses
- if llm_response.has_error():
- raise pb_utils.TritonModelException(llm_response.error().message())
- # Extract and process output
- output_ids = pb_utils.get_output_tensor_by_name(
- llm_response, "output_ids").as_numpy()
- seq_lens = pb_utils.get_output_tensor_by_name(
- llm_response, "sequence_length").as_numpy()
- # Get actual output IDs up to the sequence length
- actual_output_ids = output_ids[0][0][:seq_lens[0][0]]
- yield actual_output_ids
- def forward_audio_tokenizer(self, wav, wav_len):
- """Forward pass through the audio tokenizer component.
- Args:
- wav: Input waveform tensor
- wav_len: Waveform length tensor
- Returns:
- Tuple of global and semantic tokens
- """
- inference_request = pb_utils.InferenceRequest(
- model_name='audio_tokenizer',
- requested_output_names=['prompt_speech_tokens'],
- inputs=[wav, wav_len]
- )
- inference_response = inference_request.exec()
- if inference_response.has_error():
- raise pb_utils.TritonModelException(inference_response.error().message())
- # Extract and convert output tensors
- prompt_speech_tokens = pb_utils.get_output_tensor_by_name(inference_response, 'prompt_speech_tokens')
- prompt_speech_tokens = torch.utils.dlpack.from_dlpack(prompt_speech_tokens.to_dlpack()).cpu()
- return prompt_speech_tokens
- def forward_speaker_embedding(self, wav):
- """Forward pass through the speaker embedding component.
- Args:
- wav: Input waveform tensor
- Returns:
- Prompt speaker embedding tensor
- """
- inference_request = pb_utils.InferenceRequest(
- model_name='speaker_embedding',
- requested_output_names=['prompt_spk_embedding'],
- inputs=[pb_utils.Tensor.from_dlpack("reference_wav", to_dlpack(wav))]
- )
- inference_response = inference_request.exec()
- if inference_response.has_error():
- raise pb_utils.TritonModelException(inference_response.error().message())
- # Extract and convert output tensors
- prompt_spk_embedding = pb_utils.get_output_tensor_by_name(inference_response, 'prompt_spk_embedding')
- prompt_spk_embedding = torch.utils.dlpack.from_dlpack(prompt_spk_embedding.to_dlpack())
- return prompt_spk_embedding
- def forward_token2wav(
- self,
- target_speech_tokens: torch.Tensor,
- request_id: str,
- prompt_speech_tokens: torch.Tensor = None,
- prompt_speech_feat: torch.Tensor = None,
- prompt_spk_embedding: torch.Tensor = None,
- token_offset: int = None,
- finalize: bool = None) -> torch.Tensor:
- """Forward pass through the vocoder component.
- Args:
- prompt_speech_tokens: Prompt speech tokens tensor
- prompt_speech_feat: Prompt speech feat tensor
- prompt_spk_embedding: Prompt spk embedding tensor
- target_speech_tokens: Target speech tokens tensor
- Returns:
- Generated waveform tensor
- """
- target_speech_tokens_tensor = pb_utils.Tensor.from_dlpack("target_speech_tokens", to_dlpack(target_speech_tokens))
- inputs_tensor = [target_speech_tokens_tensor]
- if token_offset is not None:
- assert finalize is not None
- token_offset_tensor = pb_utils.Tensor("token_offset", np.array([[token_offset]], dtype=np.int32))
- finalize_tensor = pb_utils.Tensor("finalize", np.array([[finalize]], dtype=np.bool_))
- inputs_tensor.append(token_offset_tensor)
- inputs_tensor.append(finalize_tensor)
- if prompt_spk_embedding is not None:
- assert prompt_speech_feat is not None
- prompt_speech_tokens_tensor = pb_utils.Tensor.from_dlpack("prompt_speech_tokens", to_dlpack(prompt_speech_tokens))
- prompt_speech_feat_tensor = pb_utils.Tensor.from_dlpack("prompt_speech_feat", to_dlpack(prompt_speech_feat))
- prompt_spk_embedding_tensor = pb_utils.Tensor.from_dlpack("prompt_spk_embedding", to_dlpack(prompt_spk_embedding))
- inputs_tensor.extend([prompt_speech_tokens_tensor, prompt_speech_feat_tensor, prompt_spk_embedding_tensor])
- # Create and execute inference request
- inference_request = pb_utils.InferenceRequest(
- model_name='token2wav',
- requested_output_names=['waveform'],
- inputs=inputs_tensor,
- request_id=request_id,
- )
- inference_response = inference_request.exec()
- if inference_response.has_error():
- raise pb_utils.TritonModelException(inference_response.error().message())
- # Extract and convert output waveform
- waveform = pb_utils.get_output_tensor_by_name(inference_response, 'waveform')
- waveform = torch.utils.dlpack.from_dlpack(waveform.to_dlpack()).cpu()
- return waveform
- def parse_input(self, text, prompt_text, prompt_speech_tokens):
- total_text = f"{prompt_text}{text}"
- prompt = self.prompt_template.format(input_text=total_text)
- input_ids = self.tokenizer.encode(prompt)
- input_ids = torch.tensor([input_ids], dtype=torch.int32)
- input_ids = torch.cat([input_ids, prompt_speech_tokens], dim=1)
- return input_ids
- def _extract_speech_feat(self, speech):
- speech_feat = mel_spectrogram(
- speech,
- n_fft=1920,
- num_mels=80,
- sampling_rate=24000,
- hop_size=480,
- win_size=1920,
- fmin=0,
- fmax=8000).squeeze(
- dim=0).transpose(
- 0,
- 1).to(
- self.device)
- speech_feat = speech_feat.unsqueeze(dim=0)
- return speech_feat
- def _llm_gen_thread(self, generated_ids_iter, semantic_token_ids_arr, llm_is_done_flag):
- for generated_ids in generated_ids_iter:
- generated_ids = generated_ids.tolist()
- if len(generated_ids) == 0:
- break
- semantic_token_ids_arr.extend(generated_ids)
- llm_is_done_flag[0] = True
- def execute(self, requests):
- """Execute inference on the batched requests.
- Args:
- requests: List of inference requests
- Returns:
- List of inference responses containing generated audio
- """
- responses = []
- for request in requests:
- request_id = request.request_id()
- # Extract input tensors
- wav = pb_utils.get_input_tensor_by_name(request, "reference_wav")
- # Process reference audio through audio tokenizer
- if wav is not None:
- wav_len = pb_utils.get_input_tensor_by_name(request, "reference_wav_len")
- prompt_speech_tokens = self.forward_audio_tokenizer(wav, wav_len)
- prompt_speech_tokens = prompt_speech_tokens.unsqueeze(0)
- wav_tensor = wav.as_numpy()
- wav_tensor = torch.from_numpy(wav_tensor)[:, :wav_len.as_numpy()[0][0]]
- prompt_speech_resample = torchaudio.transforms.Resample(orig_freq=16000, new_freq=24000)(wav_tensor)
- speech_feat = self._extract_speech_feat(prompt_speech_resample)
- token_len = min(int(speech_feat.shape[1] / 2), prompt_speech_tokens.shape[-1])
- prompt_speech_feat = speech_feat[:, :2 * token_len].contiguous().half()
- prompt_speech_tokens = prompt_speech_tokens[:, :token_len].contiguous()
- reference_text = pb_utils.get_input_tensor_by_name(request, "reference_text").as_numpy()
- reference_text = reference_text[0][0].decode('utf-8')
- prompt_spk_embedding = self.forward_speaker_embedding(wav_tensor)
- else:
- # using pre-cached reference text
- reference_text = self.default_spk_info["prompt_text"]
- prompt_speech_tokens = self.default_spk_info["speech_token"] + ORIGINAL_VOCAB_SIZE
- prompt_speech_feat = None
- prompt_spk_embedding = None
- target_text = pb_utils.get_input_tensor_by_name(request, "target_text").as_numpy()
- target_text = target_text[0][0].decode('utf-8')
- # Prepare prompt for LLM
- input_ids = self.parse_input(
- text=target_text,
- prompt_text=reference_text,
- prompt_speech_tokens=prompt_speech_tokens,
- )
- # Generate semantic tokens with LLM
- generated_ids_iter = self.forward_llm(input_ids)
- if self.decoupled:
- response_sender = request.get_response_sender()
- semantic_token_ids_arr = []
- llm_is_done_flag = [False]
- llm_thread = threading.Thread(
- target=self._llm_gen_thread,
- args=(generated_ids_iter, semantic_token_ids_arr, llm_is_done_flag)
- )
- llm_thread.start()
- token_offset, chunk_index = 0, 0
- start_time = time.time()
- this_token_hop_len = self.token_hop_len
- while True:
- pending_num = len(semantic_token_ids_arr) - token_offset
- if llm_is_done_flag[0]:
- break
- if pending_num >= this_token_hop_len + self.flow_pre_lookahead_len:
- this_tts_speech_token = semantic_token_ids_arr[:token_offset + this_token_hop_len + self.flow_pre_lookahead_len]
- this_tts_speech_token = torch.tensor(this_tts_speech_token).unsqueeze(dim=0).to(torch.int32).to(self.device)
- sub_tts_speech = self.forward_token2wav(
- this_tts_speech_token, request_id, prompt_speech_tokens,
- prompt_speech_feat, prompt_spk_embedding, token_offset, False
- )
- audio_tensor = pb_utils.Tensor.from_dlpack("waveform", to_dlpack(sub_tts_speech))
- inference_response = pb_utils.InferenceResponse(output_tensors=[audio_tensor])
- response_sender.send(inference_response)
- token_offset += this_token_hop_len
- self.logger.log_info(f"chunk_index: {chunk_index}, current_token_hop_len: {this_token_hop_len}")
- if self.dynamic_chunk_strategy == "exponential":
- this_token_hop_len = self.token_frame_rate * (2 ** chunk_index)
- elif self.dynamic_chunk_strategy == "time_based":
- # see https://github.com/qi-hua/async_cosyvoice/blob/main/model.py#L306
- cost_time = time.time() - start_time
- duration = token_offset / self.token_frame_rate
- if chunk_index > 0 and cost_time > 0:
- avg_chunk_processing_time = cost_time / (chunk_index + 1)
- if avg_chunk_processing_time > 0:
- multiples = (duration - cost_time) / avg_chunk_processing_time
- self.logger.log_info(f"multiples: {multiples}")
- next_pending_num = len(semantic_token_ids_arr) - token_offset
- if multiples > 4:
- this_token_hop_len = (next_pending_num // self.token_hop_len + 1) * self.token_hop_len
- elif multiples > 2:
- this_token_hop_len = (next_pending_num // self.token_hop_len) * self.token_hop_len
- else:
- this_token_hop_len = self.token_hop_len
- this_token_hop_len = max(self.token_hop_len, this_token_hop_len)
- chunk_index += 1
- else:
- time.sleep(0.02)
- this_tts_speech_token = torch.tensor(semantic_token_ids_arr).unsqueeze(dim=0).to(torch.int32).to(self.device)
- sub_tts_speech = self.forward_token2wav(this_tts_speech_token, request_id, prompt_speech_tokens, prompt_speech_feat, prompt_spk_embedding, token_offset, True)
- audio_tensor = pb_utils.Tensor.from_dlpack("waveform", to_dlpack(sub_tts_speech))
- inference_response = pb_utils.InferenceResponse(output_tensors=[audio_tensor])
- response_sender.send(inference_response)
- llm_thread.join()
- response_sender.send(flags=pb_utils.TRITONSERVER_RESPONSE_COMPLETE_FINAL)
- self.logger.log_info("send tritonserver_response_complete_final to end")
- else:
- generated_ids = next(generated_ids_iter)
- generated_ids = torch.tensor(generated_ids).unsqueeze(0).to(self.device)
- if generated_ids is None or len(generated_ids) == 0:
- raise pb_utils.TritonModelException("Generated IDs is None or empty")
- audio = self.forward_token2wav(generated_ids, request_id, prompt_speech_tokens, prompt_speech_feat, prompt_spk_embedding)
- # Prepare response
- audio_tensor = pb_utils.Tensor.from_dlpack("waveform", to_dlpack(audio))
- inference_response = pb_utils.InferenceResponse(output_tensors=[audio_tensor])
- responses.append(inference_response)
- if not self.decoupled:
- return responses
|