run_dpo.sh 4.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123
  1. #!/bin/bash
  2. # Copyright 2024 Alibaba Inc. All Rights Reserved.
  3. . ./path.sh || exit 1;
  4. stage=-1
  5. stop_stage=3
  6. data_url=www.openslr.org/resources/60
  7. data_dir=/mnt/lyuxiang.lx/data/tts/openslr/libritts
  8. pretrained_model_dir=../../../pretrained_models/CosyVoice2-0.5B
  9. if [ ${stage} -le -1 ] && [ ${stop_stage} -ge -1 ]; then
  10. echo "Data Download"
  11. for part in dev-clean test-clean dev-other test-other train-clean-100 train-clean-360 train-other-500; do
  12. local/download_and_untar.sh ${data_dir} ${data_url} ${part}
  13. done
  14. fi
  15. if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
  16. echo "Data preparation, prepare wav.scp/text/utt2spk/spk2utt"
  17. for x in train-clean-100 train-clean-360 train-other-500 dev-clean dev-other test-clean test-other; do
  18. mkdir -p data/$x
  19. python local/prepare_data.py --src_dir $data_dir/LibriTTS/$x --des_dir data/$x
  20. done
  21. fi
  22. if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
  23. echo "Prepare negative samples using CosyVoice2-0.5B, this is also our reference model.
  24. Here we use CosyVoice2-0.5B generated audio as reject sample for simplicity, you can use metric like wer/similarity."
  25. for x in train-clean-100 train-clean-360 train-other-500; do
  26. mkdir -p data/${x}_reject
  27. python local/prepare_reject_sample.py --src_dir data/$x --des_dir data/${x}_reject --ref_model $pretrained_model_dir
  28. done
  29. fi
  30. if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
  31. echo "Extract campplus speaker embedding, you will get spk2embedding.pt and utt2embedding.pt in data/$x dir"
  32. for x in train-clean-100 train-clean-360 train-other-500 dev-clean dev-other test-clean test-other; do
  33. tools/extract_embedding.py --dir data/$x \
  34. --onnx_path $pretrained_model_dir/campplus.onnx
  35. done
  36. fi
  37. if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
  38. echo "Extract discrete speech token, you will get utt2speech_token.pt in data/$x dir"
  39. for x in train-clean-100 train-clean-360 train-other-500 train-clean-100_reject train-clean-360_reject dev-clean dev-other test-clean test-other; do
  40. tools/extract_speech_token.py --dir data/$x \
  41. --onnx_path $pretrained_model_dir/speech_tokenizer_v2.onnx
  42. done
  43. fi
  44. if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
  45. echo "Prepare required parquet format data, you should have prepared wav.scp/text/utt2spk/spk2utt/utt2embedding.pt/spk2embedding.pt/utt2speech_token.pt"
  46. for x in train-clean-100 train-clean-360 train-other-500 dev-clean dev-other test-clean test-other; do
  47. mkdir -p data/$x/parquet
  48. tools/make_parquet_list.py --num_utts_per_parquet 1000 \
  49. --num_processes 10 \
  50. --dpo \
  51. --src_dir data/$x \
  52. --des_dir data/$x/parquet
  53. done
  54. fi
  55. # train llm
  56. export CUDA_VISIBLE_DEVICES="0,1,2,3"
  57. num_gpus=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}')
  58. job_id=1986
  59. dist_backend="nccl"
  60. num_workers=2
  61. prefetch=100
  62. train_engine=torch_ddp
  63. if [ ${stage} -le 5 ] && [ ${stop_stage} -ge 5 ]; then
  64. echo "Run train. We only support llm traning for now"
  65. if [ $train_engine == 'deepspeed' ]; then
  66. echo "Notice deepspeed has its own optimizer config. Modify conf/ds_stage2.json if necessary"
  67. fi
  68. cat data/{train-clean-100,train-clean-360,train-other-500}/parquet/data.list > data/train.data.list
  69. cat data/{dev-clean,dev-other}/parquet/data.list > data/dev.data.list
  70. # NOTE only llm supports dpo
  71. for model in llm; do
  72. torchrun --nnodes=1 --nproc_per_node=$num_gpus \
  73. --rdzv_id=$job_id --rdzv_backend="c10d" --rdzv_endpoint="localhost:1234" \
  74. cosyvoice/bin/train.py \
  75. --train_engine $train_engine \
  76. --config conf/cosyvoice2.yaml \
  77. --train_data data/train.data.list \
  78. --cv_data data/dev.data.list \
  79. --qwen_pretrain_path $pretrained_model_dir/CosyVoice-BlankEN \
  80. --model $model \
  81. --checkpoint $pretrained_model_dir/$model.pt \
  82. --ref_model $pretrained_model_dir/llm.pt \
  83. --model_dir `pwd`/exp/cosyvoice2/$model/$train_engine \
  84. --tensorboard_dir `pwd`/tensorboard/cosyvoice2/$model/$train_engine \
  85. --ddp.dist_backend $dist_backend \
  86. --num_workers ${num_workers} \
  87. --prefetch ${prefetch} \
  88. --pin_memory \
  89. --use_amp \
  90. --dpo \
  91. --deepspeed_config ./conf/ds_stage2.json \
  92. --deepspeed.save_states model+optimizer
  93. done
  94. fi
  95. # average model
  96. average_num=5
  97. if [ ${stage} -le 6 ] && [ ${stop_stage} -ge 6 ]; then
  98. for model in llm flow hifigan; do
  99. decode_checkpoint=`pwd`/exp/cosyvoice/$model/$train_engine/${model}.pt
  100. echo "do model average and final checkpoint is $decode_checkpoint"
  101. python cosyvoice/bin/average_model.py \
  102. --dst_model $decode_checkpoint \
  103. --src_path `pwd`/exp/cosyvoice/$model/$train_engine \
  104. --num ${average_num} \
  105. --val_best
  106. done
  107. fi
  108. if [ ${stage} -le 7 ] && [ ${stop_stage} -ge 7 ]; then
  109. echo "Export your model for inference speedup. Remember copy your llm or flow model to model_dir"
  110. python cosyvoice/bin/export_jit.py --model_dir $pretrained_model_dir
  111. python cosyvoice/bin/export_onnx.py --model_dir $pretrained_model_dir
  112. fi