train.py 7.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195
  1. # Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu)
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. from __future__ import print_function
  15. import argparse
  16. import datetime
  17. import logging
  18. logging.getLogger('matplotlib').setLevel(logging.WARNING)
  19. from copy import deepcopy
  20. import os
  21. import torch
  22. import torch.distributed as dist
  23. import deepspeed
  24. from hyperpyyaml import load_hyperpyyaml
  25. from torch.distributed.elastic.multiprocessing.errors import record
  26. from cosyvoice.utils.losses import DPOLoss
  27. from cosyvoice.utils.executor import Executor
  28. from cosyvoice.utils.train_utils import (
  29. init_distributed,
  30. init_dataset_and_dataloader,
  31. init_optimizer_and_scheduler,
  32. init_summarywriter, save_model,
  33. wrap_cuda_model, check_modify_and_save_config)
  34. def get_args():
  35. parser = argparse.ArgumentParser(description='training your network')
  36. parser.add_argument('--train_engine',
  37. default='torch_ddp',
  38. choices=['torch_ddp', 'deepspeed'],
  39. help='Engine for paralleled training')
  40. parser.add_argument('--model', required=True, help='model which will be trained')
  41. parser.add_argument('--ref_model', required=False, help='ref model used in dpo')
  42. parser.add_argument('--config', required=True, help='config file')
  43. parser.add_argument('--train_data', required=True, help='train data file')
  44. parser.add_argument('--cv_data', required=True, help='cv data file')
  45. parser.add_argument('--qwen_pretrain_path', required=False, help='qwen pretrain path')
  46. parser.add_argument('--checkpoint', help='checkpoint model')
  47. parser.add_argument('--model_dir', required=True, help='save model dir')
  48. parser.add_argument('--tensorboard_dir',
  49. default='tensorboard',
  50. help='tensorboard log dir')
  51. parser.add_argument('--ddp.dist_backend',
  52. dest='dist_backend',
  53. default='nccl',
  54. choices=['nccl', 'gloo'],
  55. help='distributed backend')
  56. parser.add_argument('--num_workers',
  57. default=0,
  58. type=int,
  59. help='num of subprocess workers for reading')
  60. parser.add_argument('--prefetch',
  61. default=100,
  62. type=int,
  63. help='prefetch number')
  64. parser.add_argument('--pin_memory',
  65. action='store_true',
  66. default=False,
  67. help='Use pinned memory buffers used for reading')
  68. parser.add_argument('--use_amp',
  69. action='store_true',
  70. default=False,
  71. help='Use automatic mixed precision training')
  72. parser.add_argument('--dpo',
  73. action='store_true',
  74. default=False,
  75. help='Use Direct Preference Optimization')
  76. parser.add_argument('--deepspeed.save_states',
  77. dest='save_states',
  78. default='model_only',
  79. choices=['model_only', 'model+optimizer'],
  80. help='save model/optimizer states')
  81. parser.add_argument('--timeout',
  82. default=60,
  83. type=int,
  84. help='timeout (in seconds) of cosyvoice_join.')
  85. parser = deepspeed.add_config_arguments(parser)
  86. args = parser.parse_args()
  87. return args
  88. @record
  89. def main():
  90. args = get_args()
  91. logging.basicConfig(level=logging.DEBUG,
  92. format='%(asctime)s %(levelname)s %(message)s')
  93. # gan train has some special initialization logic
  94. gan = True if args.model == 'hifigan' else False
  95. override_dict = {k: None for k in ['llm', 'flow', 'hift', 'hifigan'] if k != args.model}
  96. if gan is True:
  97. override_dict.pop('hift')
  98. try:
  99. with open(args.config, 'r') as f:
  100. configs = load_hyperpyyaml(f, overrides={**override_dict, 'qwen_pretrain_path': args.qwen_pretrain_path})
  101. except Exception:
  102. with open(args.config, 'r') as f:
  103. configs = load_hyperpyyaml(f, overrides=override_dict)
  104. if gan is True:
  105. configs['train_conf'] = configs['train_conf_gan']
  106. configs['train_conf'].update(vars(args))
  107. # Init env for ddp
  108. init_distributed(args)
  109. # Get dataset & dataloader
  110. train_dataset, cv_dataset, train_data_loader, cv_data_loader = \
  111. init_dataset_and_dataloader(args, configs, gan, args.dpo)
  112. # Do some sanity checks and save config to arsg.model_dir
  113. configs = check_modify_and_save_config(args, configs)
  114. # Tensorboard summary
  115. writer = init_summarywriter(args)
  116. # load checkpoint
  117. if args.dpo is True:
  118. configs[args.model].forward = configs[args.model].forward_dpo
  119. model = configs[args.model]
  120. start_step, start_epoch = 0, -1
  121. if args.checkpoint is not None:
  122. if os.path.exists(args.checkpoint):
  123. state_dict = torch.load(args.checkpoint, map_location='cpu')
  124. model.load_state_dict(state_dict, strict=False)
  125. if 'step' in state_dict:
  126. start_step = state_dict['step']
  127. if 'epoch' in state_dict:
  128. start_epoch = state_dict['epoch']
  129. else:
  130. logging.warning('checkpoint {} do not exsist!'.format(args.checkpoint))
  131. # Dispatch model from cpu to gpu
  132. model = wrap_cuda_model(args, model)
  133. # Get optimizer & scheduler
  134. model, optimizer, scheduler, optimizer_d, scheduler_d = init_optimizer_and_scheduler(args, configs, model, gan)
  135. scheduler.set_step(start_step)
  136. if scheduler_d is not None:
  137. scheduler_d.set_step(start_step)
  138. # Save init checkpoints
  139. info_dict = deepcopy(configs['train_conf'])
  140. info_dict['step'] = start_step
  141. info_dict['epoch'] = start_epoch
  142. save_model(model, 'init', info_dict)
  143. # DPO related
  144. if args.dpo is True:
  145. ref_model = deepcopy(configs[args.model])
  146. state_dict = torch.load(args.ref_model, map_location='cpu')
  147. ref_model.load_state_dict(state_dict, strict=False)
  148. dpo_loss = DPOLoss(beta=0.01, label_smoothing=0.0, ipo=False)
  149. # NOTE maybe it is not needed to wrap ref_model as ddp because its parameter is not updated
  150. ref_model = wrap_cuda_model(args, ref_model)
  151. else:
  152. ref_model, dpo_loss = None, None
  153. # Get executor
  154. executor = Executor(gan=gan, ref_model=ref_model, dpo_loss=dpo_loss)
  155. executor.step = start_step
  156. # Init scaler, used for pytorch amp mixed precision training
  157. scaler = torch.cuda.amp.GradScaler() if args.use_amp else None
  158. print('start step {} start epoch {}'.format(start_step, start_epoch))
  159. # Start training loop
  160. for epoch in range(start_epoch + 1, info_dict['max_epoch']):
  161. executor.epoch = epoch
  162. train_dataset.set_epoch(epoch)
  163. dist.barrier()
  164. group_join = dist.new_group(backend="gloo", timeout=datetime.timedelta(seconds=args.timeout))
  165. if gan is True:
  166. executor.train_one_epoc_gan(model, optimizer, scheduler, optimizer_d, scheduler_d, train_data_loader, cv_data_loader,
  167. writer, info_dict, scaler, group_join)
  168. else:
  169. executor.train_one_epoc(model, optimizer, scheduler, train_data_loader, cv_data_loader, writer, info_dict, scaler, group_join, ref_model=ref_model)
  170. dist.destroy_process_group(group_join)
  171. if __name__ == '__main__':
  172. main()