| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610 |
- # Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Zhihao Du)
- # 2025 Alibaba Inc (authors: Xiang Lyu, Yabin Li, Qihua)
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import queue
- import random
- import time
- import threading
- from typing import Dict, Optional, Callable, List, Generator
- import torch
- from torch import nn
- import torch.nn.functional as F
- from transformers import Qwen2ForCausalLM
- from torch.nn.utils.rnn import pad_sequence, unpad_sequence
- from cosyvoice.utils.common import IGNORE_ID
- from cosyvoice.transformer.label_smoothing_loss import LabelSmoothingLoss
- from cosyvoice.utils.common import th_accuracy
- from cosyvoice.utils.file_utils import logging
- from cosyvoice.utils.mask import make_pad_mask
- class TransformerLM(torch.nn.Module):
- def __init__(
- self,
- text_encoder_input_size: int,
- llm_input_size: int,
- llm_output_size: int,
- text_token_size: int,
- speech_token_size: int,
- text_encoder: torch.nn.Module,
- llm: torch.nn.Module,
- sampling: Callable,
- length_normalized_loss: bool = True,
- lsm_weight: float = 0.0,
- spk_embed_dim: int = 192,
- ):
- super().__init__()
- self.llm_input_size = llm_input_size
- self.speech_token_size = speech_token_size
- # 1. build text token inputs related modules
- self.text_embedding = torch.nn.Embedding(text_token_size, text_encoder_input_size)
- self.text_encoder = text_encoder
- self.text_encoder_affine_layer = nn.Linear(
- self.text_encoder.output_size(),
- llm_input_size
- )
- # 2. build speech token language model related modules
- self.sos_eos = 0
- self.task_id = 1
- self.llm_embedding = torch.nn.Embedding(2, llm_input_size)
- self.llm = llm
- self.llm_decoder = nn.Linear(llm_output_size, speech_token_size + 1)
- self.criterion_ce = LabelSmoothingLoss(
- size=speech_token_size + 1,
- padding_idx=IGNORE_ID,
- smoothing=lsm_weight,
- normalize_length=length_normalized_loss,
- )
- # 3. [Optional] build speech token related modules
- self.speech_embedding = torch.nn.Embedding(speech_token_size, llm_input_size)
- self.spk_embed_affine_layer = torch.nn.Linear(spk_embed_dim, llm_input_size)
- # 4. sampling method
- self.sampling = sampling
- def encode(
- self,
- text: torch.Tensor,
- text_lengths: torch.Tensor,
- ):
- encoder_out, encoder_mask = self.text_encoder(text, text_lengths, decoding_chunk_size=1, num_decoding_left_chunks=-1)
- encoder_out_lens = encoder_mask.squeeze(1).sum(1)
- encoder_out = self.text_encoder_affine_layer(encoder_out)
- return encoder_out, encoder_out_lens
- def pad_unpad_sequence(self, sos_eos_emb, embedding, text_token, text_token_len, task_id_emb, speech_token, speech_token_len):
- text_token = unpad_sequence(text_token, text_token_len.cpu(), batch_first=True)
- speech_token = unpad_sequence(speech_token, speech_token_len.cpu(), batch_first=True)
- lm_input = [torch.concat([sos_eos_emb.squeeze(dim=0), embedding[i], text_token[i], task_id_emb.squeeze(dim=0), speech_token[i]], dim=0)
- for i in range(len(text_token))]
- lm_input_len = torch.tensor([i.size(0) for i in lm_input], dtype=torch.int32)
- lm_input = pad_sequence(lm_input, batch_first=True, padding_value=IGNORE_ID)
- return lm_input, lm_input_len
- def forward(
- self,
- batch: dict,
- device: torch.device,
- ) -> Dict[str, Optional[torch.Tensor]]:
- """
- Args:
- text: (B, L, D)
- text_lengths: (B,)
- audio: (B, T, N) or (B, T)
- audio_lengths: (B,)
- """
- text_token = batch['text_token'].to(device)
- text_token_len = batch['text_token_len'].to(device)
- speech_token = batch['speech_token'].to(device)
- speech_token_len = batch['speech_token_len'].to(device)
- embedding = batch['embedding'].to(device)
- # 1. prepare llm_target
- lm_target = [torch.tensor([IGNORE_ID] * (2 + text_token_len[i]) + speech_token[i, :speech_token_len[i]].tolist() +
- [self.speech_token_size]) for i in range(text_token.size(0))]
- lm_target = pad_sequence(lm_target, batch_first=True, padding_value=IGNORE_ID).to(device)
- # 1. encode text_token
- text_token = self.text_embedding(text_token)
- text_token, text_token_len = self.encode(text_token, text_token_len)
- # 2. embedding projection
- embedding = F.normalize(embedding, dim=1)
- embedding = self.spk_embed_affine_layer(embedding)
- embedding = embedding.unsqueeze(1)
- # 3. eos and task_id
- sos_eos_emb = self.llm_embedding.weight[self.sos_eos].reshape(1, 1, -1)
- task_id_emb = self.llm_embedding.weight[self.task_id].reshape(1, 1, -1)
- # 4. encode speech_token
- speech_token = self.speech_embedding(speech_token)
- # 5. unpad and pad
- lm_input, lm_input_len = self.pad_unpad_sequence(sos_eos_emb, embedding, text_token, text_token_len,
- task_id_emb, speech_token, speech_token_len)
- # 6. run lm forward
- lm_output, lm_output_mask = self.llm(lm_input, lm_input_len.to(device))
- logits = self.llm_decoder(lm_output)
- loss = self.criterion_ce(logits, lm_target)
- acc = th_accuracy(logits.view(-1, self.speech_token_size + 1), lm_target, ignore_label=IGNORE_ID)
- return {'loss': loss, 'acc': acc}
- def sampling_ids(
- self,
- weighted_scores: torch.Tensor,
- decoded_tokens: List,
- sampling: int,
- ignore_eos: bool = True,
- ):
- num_trials, max_trials = 0, 100
- while True:
- top_ids = self.sampling(weighted_scores, decoded_tokens, sampling)
- if (not ignore_eos) or (self.speech_token_size not in top_ids):
- break
- num_trials += 1
- if num_trials > max_trials:
- raise RuntimeError('sampling reaches max_trials {} and still get eos when ignore_eos is True, check your input!'.format(max_trials))
- return top_ids
- @torch.inference_mode()
- def inference(
- self,
- text: torch.Tensor,
- text_len: torch.Tensor,
- prompt_text: torch.Tensor,
- prompt_text_len: torch.Tensor,
- prompt_speech_token: torch.Tensor,
- prompt_speech_token_len: torch.Tensor,
- embedding: torch.Tensor,
- sampling: int = 25,
- max_token_text_ratio: float = 20,
- min_token_text_ratio: float = 2,
- uuid: str = '',
- ) -> Generator[torch.Tensor, None, None]:
- device = text.device
- text = torch.concat([prompt_text, text], dim=1)
- text_len += prompt_text_len
- text = self.text_embedding(text)
- # 1. encode text
- text, text_len = self.encode(text, text_len)
- # 2. encode embedding
- if embedding.shape[0] != 0:
- embedding = F.normalize(embedding, dim=1)
- embedding = self.spk_embed_affine_layer(embedding)
- embedding = embedding.unsqueeze(dim=1)
- else:
- embedding = torch.zeros(1, 0, self.llm_input_size, dtype=text.dtype).to(device).to(text.dtype)
- # 3. concat llm_input
- sos_eos_emb = self.llm_embedding.weight[self.sos_eos].reshape(1, 1, -1)
- task_id_emb = self.llm_embedding.weight[self.task_id].reshape(1, 1, -1)
- if prompt_speech_token_len != 0:
- prompt_speech_token_emb = self.speech_embedding(prompt_speech_token)
- else:
- prompt_speech_token_emb = torch.zeros(1, 0, self.llm_input_size, dtype=text.dtype).to(device)
- lm_input = torch.concat([sos_eos_emb, embedding, text, task_id_emb, prompt_speech_token_emb], dim=1)
- # 4. cal min/max_length
- min_len = int((text_len - prompt_text_len) * min_token_text_ratio)
- max_len = int((text_len - prompt_text_len) * max_token_text_ratio)
- # 5. step by step decode
- out_tokens = []
- offset = 0
- att_cache, cnn_cache = torch.zeros((0, 0, 0, 0), device=lm_input.device), torch.zeros((0, 0, 0, 0), device=lm_input.device)
- for i in range(max_len):
- y_pred, att_cache, cnn_cache = self.llm.forward_chunk(lm_input, offset=offset, required_cache_size=-1,
- att_cache=att_cache, cnn_cache=cnn_cache,
- att_mask=torch.tril(torch.ones((1, lm_input.shape[1], lm_input.shape[1]),
- device=lm_input.device)).to(torch.bool))
- logp = self.llm_decoder(y_pred[:, -1]).log_softmax(dim=-1)
- # force continue decode first token
- if i == 0:
- logp[:, self.speech_token_size] = -float('inf')
- top_ids = self.sampling_ids(logp.squeeze(dim=0), out_tokens, sampling, ignore_eos=True if i < min_len else False).item()
- if top_ids == self.speech_token_size:
- break
- # in stream mode, yield token one by one
- yield top_ids
- out_tokens.append(top_ids)
- offset += lm_input.size(1)
- lm_input = self.speech_embedding.weight[top_ids].reshape(1, 1, -1)
- class Qwen2Encoder(torch.nn.Module):
- def __init__(self, pretrain_path):
- super().__init__()
- self.model = Qwen2ForCausalLM.from_pretrained(pretrain_path)
- def forward(self, xs: torch.Tensor, xs_lens: torch.Tensor):
- T = xs.size(1)
- masks = ~make_pad_mask(xs_lens, T)
- outs = self.model(
- inputs_embeds=xs,
- attention_mask=masks,
- output_hidden_states=True,
- return_dict=True,
- )
- return outs.hidden_states[-1], masks.unsqueeze(1)
- def forward_one_step(self, xs, masks, cache=None):
- input_masks = masks[:, -1, :]
- outs = self.model(
- inputs_embeds=xs,
- attention_mask=input_masks,
- output_hidden_states=True,
- return_dict=True,
- use_cache=True,
- past_key_values=cache,
- )
- xs = outs.hidden_states[-1]
- new_cache = outs.past_key_values
- return xs, new_cache
- class Qwen2LM(TransformerLM):
- def __init__(
- self,
- llm_input_size: int,
- llm_output_size: int,
- speech_token_size: int,
- llm: torch.nn.Module,
- sampling: Callable,
- length_normalized_loss: bool = True,
- lsm_weight: float = 0.0,
- mix_ratio: List[int] = [5, 15],
- ):
- torch.nn.Module.__init__(self)
- self.llm_input_size = llm_input_size
- self.llm_output_size = llm_output_size
- self.speech_token_size = speech_token_size
- # 2. build speech token language model related modules
- self.sos_eos = 0
- self.task_id = 1
- self.fill_token = 2
- self.llm_embedding = torch.nn.Embedding(2, llm_input_size)
- self.llm = llm
- self.llm_decoder = nn.Linear(llm_output_size, speech_token_size + 3)
- self.criterion_ce = LabelSmoothingLoss(
- size=speech_token_size + 3,
- padding_idx=IGNORE_ID,
- smoothing=lsm_weight,
- normalize_length=length_normalized_loss,
- )
- # 3. [Optional] build speech token related modules
- self.speech_embedding = torch.nn.Embedding(speech_token_size + 3, llm_input_size)
- # 4. sampling method
- self.sampling = sampling
- self.mix_ratio = mix_ratio
- # 5. vllm related
- self.stop_token_ids = [speech_token_size + i for i in range(3)]
- self.vllm_output_queue = {}
- def prepare_lm_input_target(self, text_token, text_token_emb, text_token_len, speech_token, speech_token_emb, speech_token_len):
- lm_target, lm_input = [], []
- text_token = unpad_sequence(text_token, text_token_len.cpu(), batch_first=True)
- speech_token = unpad_sequence(speech_token, speech_token_len.cpu(), batch_first=True)
- text_token_emb = unpad_sequence(text_token_emb, text_token_len.cpu(), batch_first=True)
- speech_token_emb = unpad_sequence(speech_token_emb, speech_token_len.cpu(), batch_first=True)
- for i in range(len(text_token)):
- # bistream sequence
- if random.random() < 0.5 and speech_token_len[i] / text_token_len[i] > self.mix_ratio[1] / self.mix_ratio[0]:
- this_lm_target, this_lm_input = [], []
- this_lm_target.append(IGNORE_ID)
- this_lm_input.append(self.llm_embedding.weight[self.sos_eos].reshape(1, -1))
- for j in range(((text_token_len[i] + 1) / self.mix_ratio[0]).ceil().int().item()):
- this_text_token = text_token[i][j * self.mix_ratio[0]: (j + 1) * self.mix_ratio[0]].tolist()
- this_speech_token = speech_token[i][j * self.mix_ratio[1]: (j + 1) * self.mix_ratio[1]].tolist()
- if len(this_text_token) == self.mix_ratio[0]:
- assert len(this_speech_token) == self.mix_ratio[1]
- this_lm_target += [IGNORE_ID] * (self.mix_ratio[0] - 1)
- this_lm_target += this_speech_token
- this_lm_target.append(self.speech_token_size + 2)
- this_lm_input.append(text_token_emb[i][j * self.mix_ratio[0]: (j + 1) * self.mix_ratio[0]])
- this_lm_input.append(speech_token_emb[i][j * self.mix_ratio[1]: (j + 1) * self.mix_ratio[1]])
- else:
- this_lm_target += [-1] * len(this_text_token)
- this_lm_target += speech_token[i][j * self.mix_ratio[1]:].tolist()
- this_lm_target.append(self.speech_token_size)
- this_lm_input.append(text_token_emb[i][j * self.mix_ratio[0]:])
- this_lm_input.append(self.llm_embedding.weight[self.task_id].reshape(1, -1))
- this_lm_input.append(speech_token_emb[i][j * self.mix_ratio[1]:])
- this_lm_target, this_lm_input = torch.tensor(this_lm_target), torch.concat(this_lm_input, dim=0)
- # unistream sequence
- else:
- this_lm_target = torch.tensor([IGNORE_ID] * (1 + text_token_len[i]) + speech_token[i].tolist() + [self.speech_token_size])
- this_lm_input = torch.concat([self.llm_embedding.weight[self.sos_eos].reshape(1, -1), text_token_emb[i],
- self.llm_embedding.weight[self.task_id].reshape(1, -1), speech_token_emb[i]], dim=0)
- lm_target.append(this_lm_target)
- lm_input.append(this_lm_input)
- lm_input_len = torch.tensor([i.size(0) for i in lm_input], dtype=torch.int32)
- lm_input = pad_sequence(lm_input, batch_first=True, padding_value=IGNORE_ID)
- lm_target = pad_sequence(lm_target, batch_first=True, padding_value=IGNORE_ID)
- return lm_target, lm_input, lm_input_len
- def forward(
- self,
- batch: dict,
- device: torch.device,
- ) -> Dict[str, Optional[torch.Tensor]]:
- """
- Args:
- text: (B, L, D)
- text_lengths: (B,)
- audio: (B, T, N) or (B, T)
- audio_lengths: (B,)
- """
- text_token = batch['text_token'].to(device)
- text_token_len = batch['text_token_len'].to(device)
- speech_token = batch['speech_token'].to(device)
- speech_token_len = batch['speech_token_len'].to(device)
- # 1. encode text_token
- text_token_emb = self.llm.model.model.embed_tokens(text_token)
- # 2. encode speech_token
- speech_token_emb = self.speech_embedding(speech_token)
- # 3. prepare llm_input/target
- lm_target, lm_input, lm_input_len = self.prepare_lm_input_target(text_token, text_token_emb, text_token_len, speech_token, speech_token_emb, speech_token_len)
- lm_target = lm_target.to(device)
- # 4. run lm forward
- lm_output, lm_output_mask = self.llm(lm_input, lm_input_len.to(device))
- logits = self.llm_decoder(lm_output)
- loss = self.criterion_ce(logits, lm_target.to(device))
- acc = th_accuracy(logits.view(-1, self.speech_token_size + 3), lm_target, ignore_label=IGNORE_ID)
- return {'loss': loss, 'acc': acc}
- def forward_dpo(
- self,
- batch: dict,
- device: torch.device,
- ) -> Dict[str, Optional[torch.Tensor]]:
- text_token = batch['text_token'].to(device)
- text_token_len = batch['text_token_len'].to(device)
- speech_token = batch['speech_token'].to(device)
- speech_token_len = batch['speech_token_len'].to(device)
- reject_speech_token = batch['reject_speech_token'].to(device)
- reject_speech_token_len = batch['reject_speech_token_len'].to(device)
- # 1. encode text_token
- text_token_emb = self.llm.model.model.embed_tokens(text_token)
- # 2. encode speech_token
- speech_token = unpad_sequence(speech_token, speech_token_len.cpu(), batch_first=True)
- reject_speech_token = unpad_sequence(reject_speech_token, reject_speech_token_len.cpu(), batch_first=True)
- speech_token_combined = speech_token + reject_speech_token
- speech_token_combined = pad_sequence(speech_token_combined, batch_first=True, padding_value=0)
- speech_token_combined_len = torch.concat([speech_token_len, reject_speech_token_len], dim=0)
- speech_token_combined_emb = self.speech_embedding(speech_token_combined)
- # 3. prepare llm_input/target
- lm_target, lm_input, lm_input_len = self.prepare_lm_input_target(text_token.repeat(2, 1), text_token_emb.repeat(2, 1, 1), text_token_len.repeat(2), speech_token_combined, speech_token_combined_emb, speech_token_combined_len)
- lm_target = lm_target.to(device)
- # 4. run lm forward
- lm_output, lm_output_mask = self.llm(lm_input, lm_input_len.to(device))
- logits = self.llm_decoder(lm_output)
- chosen_logits = logits[:text_token.shape[0]]
- rejected_logits = logits[text_token.shape[0]:]
- chosen_lm_target = lm_target[:text_token.shape[0]]
- rejected_lm_target = lm_target[text_token.shape[0]:]
- loss = self.criterion_ce(chosen_logits, chosen_lm_target.to(device))
- acc = th_accuracy(chosen_logits.view(-1, self.speech_token_size + 3), chosen_lm_target, ignore_label=IGNORE_ID)
- # 5. calculate dpo logits
- chosen_lm_mask = chosen_lm_target == IGNORE_ID
- rejected_lm_mask = rejected_lm_target == IGNORE_ID
- chosen_logps = torch.gather(chosen_logits.log_softmax(dim=-1), dim=2, index=chosen_lm_target.masked_fill(chosen_lm_mask, 0).unsqueeze(dim=-1)).squeeze(dim=-1)
- rejected_logps = torch.gather(rejected_logits.log_softmax(dim=-1), dim=2, index=rejected_lm_target.masked_fill(rejected_lm_mask, 0).unsqueeze(dim=-1)).squeeze(dim=-1)
- chosen_logps = (chosen_logps * chosen_lm_mask).mean(dim=-1)
- rejected_logps = (rejected_logps * chosen_lm_mask).mean(dim=-1)
- return {'loss': loss, 'acc': acc, 'chosen_logps': chosen_logps, 'rejected_logps': rejected_logps}
- @torch.inference_mode()
- def inference(
- self,
- text: torch.Tensor,
- text_len: torch.Tensor,
- prompt_text: torch.Tensor,
- prompt_text_len: torch.Tensor,
- prompt_speech_token: torch.Tensor,
- prompt_speech_token_len: torch.Tensor,
- embedding: torch.Tensor,
- sampling: int = 25,
- max_token_text_ratio: float = 20,
- min_token_text_ratio: float = 2,
- uuid: str = '',
- ) -> Generator[torch.Tensor, None, None]:
- device = text.device
- text = torch.concat([prompt_text, text], dim=1)
- text_len += prompt_text_len
- text = self.llm.model.model.embed_tokens(text)
- # 3. concat llm_input
- sos_eos_emb = self.llm_embedding.weight[self.sos_eos].reshape(1, 1, -1)
- task_id_emb = self.llm_embedding.weight[self.task_id].reshape(1, 1, -1)
- if prompt_speech_token_len != 0:
- prompt_speech_token_emb = self.speech_embedding(prompt_speech_token)
- else:
- prompt_speech_token_emb = torch.zeros(1, 0, self.llm_input_size, dtype=text.dtype).to(device)
- lm_input = torch.concat([sos_eos_emb, text, task_id_emb, prompt_speech_token_emb], dim=1)
- # 4. cal min/max_length
- min_len = int((text_len - prompt_text_len) * min_token_text_ratio)
- max_len = int((text_len - prompt_text_len) * max_token_text_ratio)
- # 5. step by step decode
- for token in self.inference_wrapper(lm_input, sampling, min_len, max_len, uuid):
- yield token
- @torch.inference_mode()
- def inference_wrapper(self, lm_input, sampling, min_len, max_len, uuid):
- if hasattr(self, 'vllm'):
- from vllm import SamplingParams, RequestOutput
- sampling_params = SamplingParams(top_k=sampling,
- stop_token_ids=self.stop_token_ids,
- min_tokens=min_len,
- max_tokens=max_len)
- with self.lock:
- self.vllm.add_request(uuid, {"prompt_embeds": lm_input.squeeze(0).to(torch.bfloat16).to(lm_input.device)}, sampling_params)
- self.vllm_output_queue[uuid] = queue.Queue()
- out_tokens = []
- while True:
- with self.lock:
- if self.vllm_output_queue[uuid].empty() is True:
- request_outputs: List[RequestOutput] = self.vllm.step()
- for request_output in request_outputs:
- top_ids = list(request_output.outputs[0].token_ids)[-1]
- self.vllm_output_queue[request_output.request_id].put(top_ids)
- if self.vllm_output_queue[uuid].empty() is False:
- top_ids = self.vllm_output_queue[uuid].get()
- if top_ids in self.stop_token_ids:
- break
- # in stream mode, yield token one by one
- yield top_ids
- out_tokens.append(top_ids)
- if len(out_tokens) == max_len:
- break
- time.sleep(0.001)
- with self.lock:
- self.vllm_output_queue.pop(uuid)
- else:
- out_tokens = []
- cache = None
- for i in range(max_len):
- y_pred, cache = self.llm.forward_one_step(lm_input,
- masks=torch.tril(torch.ones((1, lm_input.shape[1], lm_input.shape[1]), device=lm_input.device)).to(torch.bool),
- cache=cache)
- logp = self.llm_decoder(y_pred[:, -1]).log_softmax(dim=-1)
- top_ids = self.sampling_ids(logp.squeeze(dim=0), out_tokens, sampling, ignore_eos=True if i < min_len else False).item()
- if top_ids == self.speech_token_size:
- break
- if top_ids > self.speech_token_size:
- continue
- # in stream mode, yield token one by one
- yield top_ids
- out_tokens.append(top_ids)
- lm_input = self.speech_embedding.weight[top_ids].reshape(1, 1, -1)
- @torch.inference_mode()
- def inference_bistream(
- self,
- text: Generator,
- prompt_text: torch.Tensor,
- prompt_text_len: torch.Tensor,
- prompt_speech_token: torch.Tensor,
- prompt_speech_token_len: torch.Tensor,
- embedding: torch.Tensor,
- sampling: int = 25,
- max_token_text_ratio: float = 20,
- min_token_text_ratio: float = 2,
- ) -> Generator[torch.Tensor, None, None]:
- device = prompt_text.device
- # 1. prepare input
- sos_eos_emb = self.llm_embedding.weight[self.sos_eos].reshape(1, 1, -1)
- task_id_emb = self.llm_embedding.weight[self.task_id].reshape(1, 1, -1)
- if prompt_speech_token_len != 0:
- prompt_speech_token_emb = self.speech_embedding(prompt_speech_token)
- else:
- prompt_speech_token_emb = torch.zeros(1, 0, self.llm_input_size, dtype=prompt_text.dtype).to(device)
- lm_input = torch.concat([sos_eos_emb], dim=1)
- # 2. iterate text
- out_tokens = []
- cache = None
- # NOTE init prompt_text as text_cache as it is basically impossible prompt_speech_token/prompt_text < 15/5
- text_cache = self.llm.model.model.embed_tokens(prompt_text)
- next_fill_index = -1
- for this_text in text:
- text_cache = torch.concat([text_cache, self.llm.model.model.embed_tokens(this_text)], dim=1)
- # prompt_speech_token_emb not empty, try append to lm_input
- while prompt_speech_token_emb.size(1) != 0:
- if text_cache.size(1) >= self.mix_ratio[0]:
- lm_input_text, lm_input_speech = text_cache[:, :self.mix_ratio[0]], prompt_speech_token_emb[:, :self.mix_ratio[1]]
- logging.info('append {} text token {} speech token'.format(lm_input_text.size(1), lm_input_speech.size(1)))
- lm_input = torch.concat([lm_input, lm_input_text, lm_input_speech], dim=1)
- text_cache, prompt_speech_token_emb = text_cache[:, self.mix_ratio[0]:], prompt_speech_token_emb[:, self.mix_ratio[1]:]
- else:
- logging.info('not enough text token to decode, wait for more')
- break
- # no prompt_speech_token_emb remain, can decode some speech token
- if prompt_speech_token_emb.size(1) == 0:
- if (len(out_tokens) != 0 and out_tokens[-1] == self.speech_token_size + 2) or (len(out_tokens) == 0 and lm_input.size(1) == 1):
- logging.info('get fill token, need to append more text token')
- if text_cache.size(1) >= self.mix_ratio[0]:
- lm_input_text = text_cache[:, :self.mix_ratio[0]]
- logging.info('append {} text token'.format(lm_input_text.size(1)))
- if len(out_tokens) != 0 and out_tokens[-1] == self.speech_token_size + 2:
- lm_input = lm_input_text
- else:
- lm_input = torch.concat([lm_input, lm_input_text], dim=1)
- text_cache = text_cache[:, self.mix_ratio[0]:]
- else:
- logging.info('not enough text token to decode, wait for more')
- continue
- while True:
- seq_len = lm_input.shape[1] if cache is None else lm_input.shape[1] + cache[0][0].size(2)
- y_pred, cache = self.llm.forward_one_step(lm_input,
- masks=torch.tril(torch.ones((1, seq_len, seq_len), device=lm_input.device)).to(torch.bool),
- cache=cache)
- logp = self.llm_decoder(y_pred[:, -1]).log_softmax(dim=-1)
- if next_fill_index != -1 and len(out_tokens) == next_fill_index:
- top_ids = self.speech_token_size + 2
- next_fill_index += (self.mix_ratio[1] + 1)
- else:
- top_ids = self.sampling_ids(logp.squeeze(dim=0), out_tokens, sampling, ignore_eos=True).item()
- if top_ids == self.speech_token_size + 2:
- next_fill_index = len(out_tokens) + self.mix_ratio[1] + 1
- logging.info('fill_token index {} next fill_token index {}'.format(len(out_tokens), next_fill_index))
- out_tokens.append(top_ids)
- if top_ids >= self.speech_token_size:
- if top_ids == self.speech_token_size + 2:
- break
- else:
- raise ValueError('should not get token {}'.format(top_ids))
- yield top_ids
- lm_input = self.speech_embedding.weight[top_ids].reshape(1, 1, -1)
- # 3. final decode
- lm_input = torch.concat([lm_input, text_cache, task_id_emb], dim=1)
- logging.info('no more text token, decode until met eos')
- while True:
- seq_len = lm_input.shape[1] if cache is None else lm_input.shape[1] + cache[0][0].size(2)
- y_pred, cache = self.llm.forward_one_step(lm_input,
- masks=torch.tril(torch.ones((1, seq_len, seq_len), device=lm_input.device)).to(torch.bool),
- cache=cache)
- logp = self.llm_decoder(y_pred[:, -1]).log_softmax(dim=-1)
- top_ids = self.sampling_ids(logp.squeeze(dim=0), out_tokens, sampling, ignore_eos=False).item()
- out_tokens.append(top_ids)
- if top_ids >= self.speech_token_size:
- if top_ids == self.speech_token_size:
- break
- else:
- raise ValueError('should not get token {}'.format(top_ids))
- # in stream mode, yield token one by one
- yield top_ids
- lm_input = self.speech_embedding.weight[top_ids].reshape(1, 1, -1)
|