| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657 |
- import torch
- import torch.nn.functional as F
- from typing import Tuple
- def tpr_loss(disc_real_outputs, disc_generated_outputs, tau):
- loss = 0
- for dr, dg in zip(disc_real_outputs, disc_generated_outputs):
- m_DG = torch.median((dr - dg))
- L_rel = torch.mean((((dr - dg) - m_DG) ** 2)[dr < dg + m_DG])
- loss += tau - F.relu(tau - L_rel)
- return loss
- def mel_loss(real_speech, generated_speech, mel_transforms):
- loss = 0
- for transform in mel_transforms:
- mel_r = transform(real_speech)
- mel_g = transform(generated_speech)
- loss += F.l1_loss(mel_g, mel_r)
- return loss
- class DPOLoss(torch.nn.Module):
- """
- DPO Loss
- """
- def __init__(self, beta: float, label_smoothing: float = 0.0, ipo: bool = False) -> None:
- super().__init__()
- self.beta = beta
- self.label_smoothing = label_smoothing
- self.ipo = ipo
- def forward(
- self,
- policy_chosen_logps: torch.Tensor,
- policy_rejected_logps: torch.Tensor,
- reference_chosen_logps: torch.Tensor,
- reference_rejected_logps: torch.Tensor,
- ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
- pi_logratios = policy_chosen_logps - policy_rejected_logps
- ref_logratios = reference_chosen_logps - reference_rejected_logps
- logits = pi_logratios - ref_logratios
- if self.ipo:
- losses = (logits - 1 / (2 * self.beta)) ** 2 # Eq. 17 of https://arxiv.org/pdf/2310.12036v2.pdf
- else:
- # Eq. 3 https://ericmitchell.ai/cdpo.pdf; label_smoothing=0 gives original DPO (Eq. 7 of https://arxiv.org/pdf/2305.18290.pdf)
- losses = (
- -F.logsigmoid(self.beta * logits) * (1 - self.label_smoothing)
- - F.logsigmoid(-self.beta * logits) * self.label_smoothing
- )
- loss = losses.mean()
- chosen_rewards = self.beta * (policy_chosen_logps - reference_chosen_logps).detach()
- rejected_rewards = self.beta * (policy_rejected_logps - reference_rejected_logps).detach()
- return loss, chosen_rewards, rejected_rewards
|