| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849 |
- import argparse
- import logging
- import os
- from tqdm import tqdm
- import torch, torchaudio
- from cosyvoice.cli.cosyvoice import CosyVoice2
- from cosyvoice.utils.file_utils import load_wav
- logger = logging.getLogger()
- def main():
- cosyvoice = CosyVoice2(args.ref_model)
- utt2wav, utt2text = {}, {}
- with open('{}/wav.scp'.format(args.src_dir)) as f:
- for l in f:
- l = l.split('\n')[0].split()
- utt2wav[l[0]] = l[1]
- with open('{}/text'.format(args.src_dir)) as f:
- for l in f:
- l = l.split('\n')[0].split()
- utt2text[l[0]] = ' '.join(l[1:])
- os.makedirs('{}/wav'.format(args.des_dir), exist_ok=True)
- with open('{}/wav.scp'.format(args.des_dir), 'w') as f:
- for utt, wav in tqdm(utt2wav.items()):
- prompt_speech_16k = load_wav(wav, 16000)
- if prompt_speech_16k.shape[1] >= 30 * 16000:
- continue
- speech_list = []
- for i, j in enumerate(cosyvoice.inference_zero_shot(utt2text[utt], utt2text[utt], prompt_speech_16k, stream=False, text_frontend=False)):
- speech_list.append(j['tts_speech'])
- negative_wav = os.path.abspath('{}/wav/{}'.format(args.des_dir, os.path.basename(wav)))
- torchaudio.save(negative_wav, torch.concat(speech_list, dim=1), cosyvoice.sample_rate, backend='soundfile')
- f.write('{} {}\n'.format(utt, negative_wav))
- if __name__ == "__main__":
- parser = argparse.ArgumentParser()
- parser.add_argument('--src_dir',
- type=str)
- parser.add_argument('--des_dir',
- type=str)
- parser.add_argument('--ref_model',
- type=str)
- args = parser.parse_args()
- main()
|