run.sh 3.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109
  1. #!/bin/bash
  2. # Copyright 2024 Alibaba Inc. All Rights Reserved.
  3. . ./path.sh || exit 1;
  4. stage=-1
  5. stop_stage=3
  6. data_url=www.openslr.org/resources/68
  7. data_dir=/mnt/hengwu.zty/data/tts/openslr/magicdata-read
  8. pretrained_model_dir=../../../pretrained_models/CosyVoice-300M
  9. if [ ${stage} -le -1 ] && [ ${stop_stage} -ge -1 ]; then
  10. echo "Data Download"
  11. for part in dev_set test_set train_set; do
  12. local/download_and_untar.sh ${data_dir} ${data_url} ${part}
  13. done
  14. fi
  15. if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
  16. echo "Data preparation, prepare wav.scp/text/utt2spk/spk2utt"
  17. for x in dev test train; do
  18. mkdir -p data/$x
  19. python local/prepare_data.py --src_dir $data_dir/$x --des_dir data/$x
  20. done
  21. fi
  22. if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
  23. echo "Extract campplus speaker embedding, you will get spk2embedding.pt and utt2embedding.pt in data/$x dir"
  24. for x in dev test train; do
  25. tools/extract_embedding.py --dir data/$x \
  26. --onnx_path $pretrained_model_dir/campplus.onnx
  27. done
  28. fi
  29. if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
  30. echo "Extract discrete speech token, you will get utt2speech_token.pt in data/$x dir"
  31. for x in dev test train; do
  32. tools/extract_speech_token.py --dir data/$x \
  33. --onnx_path $pretrained_model_dir/speech_tokenizer_v1.onnx
  34. done
  35. fi
  36. if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
  37. echo "Prepare required parquet format data, you should have prepared wav.scp/text/utt2spk/spk2utt/utt2embedding.pt/spk2embedding.pt/utt2speech_token.pt"
  38. for x in dev test train; do
  39. mkdir -p data/$x/parquet
  40. tools/make_parquet_list.py --num_utts_per_parquet 1000 \
  41. --num_processes 10 \
  42. --src_dir data/$x \
  43. --des_dir data/$x/parquet
  44. done
  45. fi
  46. # train llm
  47. export CUDA_VISIBLE_DEVICES="0,1,2,3"
  48. num_gpus=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}')
  49. job_id=1986
  50. dist_backend="nccl"
  51. num_workers=2
  52. prefetch=100
  53. train_engine=torch_ddp
  54. if [ ${stage} -le 5 ] && [ ${stop_stage} -ge 5 ]; then
  55. echo "Run train. We only support llm traning for now. If your want to train from scratch, please use conf/cosyvoice.fromscratch.yaml"
  56. if [ $train_engine == 'deepspeed' ]; then
  57. echo "Notice deepspeed has its own optimizer config. Modify conf/ds_stage2.json if necessary"
  58. fi
  59. cp data/train/parquet/data.list data/train.data.list
  60. cp data/dev/parquet/data.list data/dev.data.list
  61. for model in llm flow hifigan; do
  62. torchrun --nnodes=1 --nproc_per_node=$num_gpus \
  63. --rdzv_id=$job_id --rdzv_backend="c10d" --rdzv_endpoint="localhost:0" \
  64. cosyvoice/bin/train.py \
  65. --train_engine $train_engine \
  66. --config conf/cosyvoice.yaml \
  67. --train_data data/train.data.list \
  68. --cv_data data/dev.data.list \
  69. --model $model \
  70. --checkpoint $pretrained_model_dir/$model.pt \
  71. --model_dir `pwd`/exp/cosyvoice/$model/$train_engine \
  72. --tensorboard_dir `pwd`/tensorboard/cosyvoice/$model/$train_engine \
  73. --ddp.dist_backend $dist_backend \
  74. --num_workers ${num_workers} \
  75. --prefetch ${prefetch} \
  76. --pin_memory \
  77. --use_amp \
  78. --deepspeed_config ./conf/ds_stage2.json \
  79. --deepspeed.save_states model+optimizer
  80. done
  81. fi
  82. # average model
  83. average_num=5
  84. if [ ${stage} -le 6 ] && [ ${stop_stage} -ge 6 ]; then
  85. for model in llm flow hifigan; do
  86. decode_checkpoint=`pwd`/exp/cosyvoice/$model/$train_engine/${model}.pt
  87. echo "do model average and final checkpoint is $decode_checkpoint"
  88. python cosyvoice/bin/average_model.py \
  89. --dst_model $decode_checkpoint \
  90. --src_path `pwd`/exp/cosyvoice/$model/$train_engine \
  91. --num ${average_num} \
  92. --val_best
  93. done
  94. fi
  95. if [ ${stage} -le 6 ] && [ ${stop_stage} -ge 6 ]; then
  96. echo "Export your model for inference speedup. Remember copy your llm or flow model to model_dir"
  97. python cosyvoice/bin/export_jit.py --model_dir $pretrained_model_dir
  98. python cosyvoice/bin/export_onnx.py --model_dir $pretrained_model_dir
  99. fi