run.sh 3.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596
  1. #!/bin/bash
  2. # Copyright 2024 Alibaba Inc. All Rights Reserved.
  3. . ./path.sh || exit 1;
  4. stage=-1
  5. stop_stage=3
  6. data_url=www.openslr.org/resources/60
  7. data_dir=/mnt/lyuxiang.lx/data/tts/openslr/libritts
  8. pretrained_model_dir=../../../pretrained_models/CosyVoice2-0.5B
  9. if [ ${stage} -le -1 ] && [ ${stop_stage} -ge -1 ]; then
  10. echo "Data Download"
  11. for part in dev-clean test-clean dev-other test-other train-clean-100 train-clean-360 train-other-500; do
  12. local/download_and_untar.sh ${data_dir} ${data_url} ${part}
  13. done
  14. fi
  15. if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
  16. echo "Data preparation, prepare wav.scp/text/utt2spk/spk2utt"
  17. for x in train-clean-100 train-clean-360 train-other-500 dev-clean dev-other test-clean test-other; do
  18. mkdir -p data/$x
  19. python local/prepare_data.py --src_dir $data_dir/LibriTTS/$x --des_dir data/$x
  20. done
  21. fi
  22. # NOTE embedding/token extraction is not necessary now as we support online feature extraction
  23. if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
  24. echo "Prepare required parquet format data, you should have prepared wav.scp/text/utt2spk/spk2utt/utt2embedding.pt/spk2embedding.pt/utt2speech_token.pt"
  25. for x in train-clean-100 train-clean-360 train-other-500 dev-clean dev-other test-clean test-other; do
  26. mkdir -p data/$x/parquet
  27. ../../../tools/make_parquet_list.py --num_utts_per_parquet 1000 \
  28. --num_processes 10 \
  29. --src_dir data/$x \
  30. --des_dir data/$x/parquet
  31. done
  32. fi
  33. # train llm
  34. export CUDA_VISIBLE_DEVICES="0,1,2,3"
  35. num_gpus=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}')
  36. job_id=1986
  37. dist_backend="nccl"
  38. num_workers=2
  39. prefetch=100
  40. train_engine=torch_ddp
  41. if [ ${stage} -le 5 ] && [ ${stop_stage} -ge 5 ]; then
  42. echo "Run train. We only support llm traning for now"
  43. if [ $train_engine == 'deepspeed' ]; then
  44. echo "Notice deepspeed has its own optimizer config. Modify conf/ds_stage2.json if necessary"
  45. fi
  46. cat data/{train-clean-100,train-clean-360,train-other-500}/parquet/data.list > data/train.data.list
  47. cat data/{dev-clean,dev-other}/parquet/data.list > data/dev.data.list
  48. for model in llm flow hifigan; do
  49. torchrun --nnodes=1 --nproc_per_node=$num_gpus \
  50. --rdzv_id=$job_id --rdzv_backend="c10d" --rdzv_endpoint="localhost:1234" \
  51. ../../../cosyvoice/bin/train.py \
  52. --train_engine $train_engine \
  53. --config conf/cosyvoice2.yaml \
  54. --train_data data/train.data.list \
  55. --cv_data data/dev.data.list \
  56. --qwen_pretrain_path $pretrained_model_dir/CosyVoice-BlankEN \
  57. --onnx_path $pretrained_model_dir \
  58. --model $model \
  59. --checkpoint $pretrained_model_dir/$model.pt \
  60. --model_dir `pwd`/exp/cosyvoice2/$model/$train_engine \
  61. --tensorboard_dir `pwd`/tensorboard/cosyvoice2/$model/$train_engine \
  62. --ddp.dist_backend $dist_backend \
  63. --num_workers ${num_workers} \
  64. --prefetch ${prefetch} \
  65. --pin_memory \
  66. --use_amp \
  67. --deepspeed_config ./conf/ds_stage2.json \
  68. --deepspeed.save_states model+optimizer
  69. done
  70. fi
  71. # average model
  72. average_num=5
  73. if [ ${stage} -le 6 ] && [ ${stop_stage} -ge 6 ]; then
  74. for model in llm flow hifigan; do
  75. decode_checkpoint=`pwd`/exp/cosyvoice/$model/$train_engine/${model}.pt
  76. echo "do model average and final checkpoint is $decode_checkpoint"
  77. python cosyvoice/bin/average_model.py \
  78. --dst_model $decode_checkpoint \
  79. --src_path `pwd`/exp/cosyvoice/$model/$train_engine \
  80. --num ${average_num} \
  81. --val_best
  82. done
  83. fi
  84. if [ ${stage} -le 7 ] && [ ${stop_stage} -ge 7 ]; then
  85. echo "Export your model for inference speedup. Remember copy your llm or flow model to model_dir"
  86. python cosyvoice/bin/export_jit.py --model_dir $pretrained_model_dir
  87. python cosyvoice/bin/export_onnx.py --model_dir $pretrained_model_dir
  88. fi