train_utils.py 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313
  1. # Copyright (c) 2021 Mobvoi Inc. (authors: Binbin Zhang)
  2. # 2023 Horizon Inc. (authors: Xingchen Song)
  3. # 2024 Alibaba Inc (authors: Xiang Lyu)
  4. #
  5. # Licensed under the Apache License, Version 2.0 (the "License");
  6. # you may not use this file except in compliance with the License.
  7. # You may obtain a copy of the License at
  8. #
  9. # http://www.apache.org/licenses/LICENSE-2.0
  10. #
  11. # Unless required by applicable law or agreed to in writing, software
  12. # distributed under the License is distributed on an "AS IS" BASIS,
  13. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  14. # See the License for the specific language governing permissions and
  15. # limitations under the License.
  16. from contextlib import nullcontext
  17. import logging
  18. import os
  19. import torch
  20. import json
  21. import re
  22. import datetime
  23. import yaml
  24. import deepspeed
  25. import torch.optim as optim
  26. import torch.distributed as dist
  27. from torch.utils.tensorboard import SummaryWriter
  28. from torch.utils.data import DataLoader
  29. from torch.nn.utils import clip_grad_norm_
  30. from deepspeed.runtime.zero.stage_1_and_2 import estimate_zero2_model_states_mem_needs_all_live
  31. from cosyvoice.dataset.dataset import Dataset
  32. from cosyvoice.utils.scheduler import WarmupLR, NoamHoldAnnealing, ConstantLR
  33. def init_distributed(args):
  34. world_size = int(os.environ.get('WORLD_SIZE', 1))
  35. local_rank = int(os.environ.get('LOCAL_RANK', 0))
  36. rank = int(os.environ.get('RANK', 0))
  37. logging.info('training on multiple gpus, this gpu {}'.format(local_rank) +
  38. ', rank {}, world_size {}'.format(rank, world_size))
  39. if args.train_engine == 'torch_ddp':
  40. torch.cuda.set_device(local_rank)
  41. dist.init_process_group(args.dist_backend)
  42. else:
  43. deepspeed.init_distributed(dist_backend=args.dist_backend)
  44. return world_size, local_rank, rank
  45. def init_dataset_and_dataloader(args, configs, gan):
  46. data_pipeline = configs['data_pipeline_gan'] if gan is True else configs['data_pipeline']
  47. train_dataset = Dataset(args.train_data, data_pipeline=data_pipeline, mode='train', gan=gan, shuffle=True, partition=True)
  48. cv_dataset = Dataset(args.cv_data, data_pipeline=data_pipeline, mode='train', gan=gan, shuffle=False, partition=False)
  49. # do not use persistent_workers=True, as whisper tokenizer opens tiktoken file each time when the for loop starts
  50. train_data_loader = DataLoader(train_dataset,
  51. batch_size=None,
  52. pin_memory=args.pin_memory,
  53. num_workers=args.num_workers,
  54. prefetch_factor=args.prefetch)
  55. cv_data_loader = DataLoader(cv_dataset,
  56. batch_size=None,
  57. pin_memory=args.pin_memory,
  58. num_workers=args.num_workers,
  59. prefetch_factor=args.prefetch)
  60. return train_dataset, cv_dataset, train_data_loader, cv_data_loader
  61. def check_modify_and_save_config(args, configs):
  62. if args.train_engine == "torch_ddp":
  63. configs['train_conf']["dtype"] = 'fp32'
  64. else:
  65. with open(args.deepspeed_config, 'r') as fin:
  66. ds_configs = json.load(fin)
  67. if "fp16" in ds_configs and ds_configs["fp16"]["enabled"]:
  68. configs['train_conf']["dtype"] = "fp16"
  69. elif "bf16" in ds_configs and ds_configs["bf16"]["enabled"]:
  70. configs['train_conf']["dtype"] = "bf16"
  71. else:
  72. configs['train_conf']["dtype"] = "fp32"
  73. assert ds_configs["train_micro_batch_size_per_gpu"] == 1
  74. # if use deepspeed, override ddp config
  75. configs['train_conf']['save_per_step'] = int(configs['train_conf']['save_per_step'] *
  76. configs['train_conf']['accum_grad'] / ds_configs["gradient_accumulation_steps"])
  77. configs['train_conf']['accum_grad'] = ds_configs["gradient_accumulation_steps"]
  78. configs['train_conf']['grad_clip'] = ds_configs["gradient_clipping"]
  79. configs['train_conf']['log_interval'] = ds_configs["steps_per_print"]
  80. return configs
  81. def wrap_cuda_model(args, model):
  82. local_world_size = int(os.environ.get('LOCAL_WORLD_SIZE', 1))
  83. world_size = int(os.environ.get('WORLD_SIZE', 1))
  84. if args.train_engine == "torch_ddp": # native pytorch ddp
  85. assert (torch.cuda.is_available())
  86. model.cuda()
  87. model = torch.nn.parallel.DistributedDataParallel(model, find_unused_parameters=True)
  88. else:
  89. if int(os.environ.get('RANK', 0)) == 0:
  90. logging.info("Estimating model states memory needs (zero2)...")
  91. estimate_zero2_model_states_mem_needs_all_live(
  92. model,
  93. num_gpus_per_node=local_world_size,
  94. num_nodes=world_size // local_world_size)
  95. return model
  96. def init_optimizer_and_scheduler(args, configs, model, gan):
  97. key = 'train_conf_gan' if gan is True else 'train_conf'
  98. if configs[key]['optim'] == 'adam':
  99. optimizer = optim.Adam(model.parameters(), **configs[key]['optim_conf'])
  100. elif configs[key]['optim'] == 'adamw':
  101. optimizer = optim.AdamW(model.parameters(), **configs[key]['optim_conf'])
  102. else:
  103. raise ValueError("unknown optimizer: " + configs[key])
  104. if configs[key]['scheduler'] == 'warmuplr':
  105. scheduler_type = WarmupLR
  106. scheduler = WarmupLR(optimizer, **configs[key]['scheduler_conf'])
  107. elif configs[key]['scheduler'] == 'NoamHoldAnnealing':
  108. scheduler_type = NoamHoldAnnealing
  109. scheduler = NoamHoldAnnealing(optimizer, **configs[key]['scheduler_conf'])
  110. elif configs[key]['scheduler'] == 'constantlr':
  111. scheduler_type = ConstantLR
  112. scheduler = ConstantLR(optimizer)
  113. else:
  114. raise ValueError("unknown scheduler: " + configs[key])
  115. # use deepspeed optimizer for speedup
  116. if args.train_engine == "deepspeed":
  117. def scheduler(opt):
  118. return scheduler_type(opt, **configs[key]['scheduler_conf'])
  119. model, optimizer, _, scheduler = deepspeed.initialize(
  120. args=args,
  121. model=model,
  122. optimizer=None,
  123. lr_scheduler=scheduler,
  124. model_parameters=model.parameters())
  125. # currently we wrap generator and discriminator in one model, so we cannot use deepspeed
  126. if gan is True:
  127. if configs[key]['optim_d'] == 'adam':
  128. optimizer_d = optim.Adam(model.module.discriminator.parameters(), **configs[key]['optim_conf'])
  129. elif configs[key]['optim_d'] == 'adamw':
  130. optimizer_d = optim.AdamW(model.module.discriminator.parameters(), **configs[key]['optim_conf'])
  131. else:
  132. raise ValueError("unknown optimizer: " + configs[key])
  133. if configs[key]['scheduler_d'] == 'warmuplr':
  134. scheduler_type = WarmupLR
  135. scheduler_d = WarmupLR(optimizer_d, **configs[key]['scheduler_conf'])
  136. elif configs[key]['scheduler_d'] == 'NoamHoldAnnealing':
  137. scheduler_type = NoamHoldAnnealing
  138. scheduler_d = NoamHoldAnnealing(optimizer_d, **configs[key]['scheduler_conf'])
  139. elif configs[key]['scheduler'] == 'constantlr':
  140. scheduler_type = ConstantLR
  141. scheduler_d = ConstantLR(optimizer_d)
  142. else:
  143. raise ValueError("unknown scheduler: " + configs[key])
  144. else:
  145. optimizer_d, scheduler_d = None, None
  146. return model, optimizer, scheduler, optimizer_d, scheduler_d
  147. def init_summarywriter(args):
  148. writer = None
  149. if int(os.environ.get('RANK', 0)) == 0:
  150. os.makedirs(args.model_dir, exist_ok=True)
  151. writer = SummaryWriter(args.tensorboard_dir)
  152. return writer
  153. def save_model(model, model_name, info_dict):
  154. rank = int(os.environ.get('RANK', 0))
  155. model_dir = info_dict["model_dir"]
  156. save_model_path = os.path.join(model_dir, '{}.pt'.format(model_name))
  157. if info_dict["train_engine"] == "torch_ddp":
  158. if rank == 0:
  159. torch.save(model.module.state_dict(), save_model_path)
  160. else:
  161. with torch.no_grad():
  162. model.save_checkpoint(save_dir=model_dir,
  163. tag=model_name,
  164. client_state=info_dict)
  165. if rank == 0:
  166. info_path = re.sub('.pt$', '.yaml', save_model_path)
  167. info_dict['save_time'] = datetime.datetime.now().strftime('%d/%m/%Y %H:%M:%S')
  168. with open(info_path, 'w') as fout:
  169. data = yaml.dump(info_dict)
  170. fout.write(data)
  171. logging.info('[Rank {}] Checkpoint: save to checkpoint {}'.format(rank, save_model_path))
  172. def cosyvoice_join(group_join, info_dict):
  173. world_size = int(os.environ.get('WORLD_SIZE', 1))
  174. local_rank = int(os.environ.get('LOCAL_RANK', 0))
  175. rank = int(os.environ.get('RANK', 0))
  176. if info_dict["batch_idx"] != 0:
  177. # we try to join all rank in both ddp and deepspeed mode, in case different rank has different lr
  178. try:
  179. dist.monitored_barrier(group=group_join,
  180. timeout=group_join.options._timeout)
  181. return False
  182. except RuntimeError as e:
  183. logging.info("Detected uneven workload distribution: {}\n".format(e) +
  184. "Break current worker to manually join all workers, " +
  185. "world_size {}, current rank {}, current local_rank {}\n".
  186. format(world_size, rank, local_rank))
  187. return True
  188. else:
  189. return False
  190. def batch_forward(model, batch, info_dict):
  191. device = int(os.environ.get('LOCAL_RANK', 0))
  192. dtype = info_dict["dtype"]
  193. if dtype == "fp16":
  194. dtype = torch.float16
  195. elif dtype == "bf16":
  196. dtype = torch.bfloat16
  197. else: # fp32
  198. dtype = torch.float32
  199. if info_dict['train_engine'] == 'torch_ddp':
  200. autocast = nullcontext()
  201. else:
  202. autocast = torch.cuda.amp.autocast(enabled=True, dtype=dtype, cache_enabled=False)
  203. with autocast:
  204. info_dict['loss_dict'] = model(batch, device)
  205. return info_dict
  206. def batch_backward(model, info_dict):
  207. if info_dict["train_engine"] == "deepspeed":
  208. scaled_loss = model.backward(info_dict['loss_dict']['loss'])
  209. else:
  210. scaled_loss = info_dict['loss_dict']['loss'] / info_dict['accum_grad']
  211. scaled_loss.backward()
  212. info_dict['loss_dict']['loss'] = scaled_loss
  213. return info_dict
  214. def update_parameter_and_lr(model, optimizer, scheduler, info_dict):
  215. grad_norm = 0.0
  216. if info_dict['train_engine'] == "deepspeed":
  217. info_dict["is_gradient_accumulation_boundary"] = model.is_gradient_accumulation_boundary()
  218. model.step()
  219. grad_norm = model.get_global_grad_norm()
  220. elif (info_dict['batch_idx'] + 1) % info_dict["accum_grad"] == 0:
  221. grad_norm = clip_grad_norm_(model.parameters(), info_dict['grad_clip'])
  222. if torch.isfinite(grad_norm):
  223. optimizer.step()
  224. optimizer.zero_grad()
  225. scheduler.step()
  226. info_dict["lr"] = optimizer.param_groups[0]['lr']
  227. info_dict["grad_norm"] = grad_norm
  228. return info_dict
  229. def log_per_step(writer, info_dict):
  230. tag = info_dict["tag"]
  231. epoch = info_dict.get('epoch', 0)
  232. step = info_dict["step"]
  233. batch_idx = info_dict["batch_idx"]
  234. loss_dict = info_dict['loss_dict']
  235. rank = int(os.environ.get('RANK', 0))
  236. # only rank 0 write to tensorboard to avoid multi-process write
  237. if writer is not None:
  238. if (info_dict['train_engine'] == 'deepspeed' and info_dict['is_gradient_accumulation_boundary'] is True) or \
  239. (info_dict['train_engine'] == 'torch_ddp' and (info_dict['batch_idx'] + 1) % info_dict['accum_grad'] == 0):
  240. for k in ['epoch', 'lr', 'grad_norm']:
  241. writer.add_scalar('{}/{}'.format(tag, k), info_dict[k], step + 1)
  242. for k, v in loss_dict.items():
  243. writer.add_scalar('{}/{}'.format(tag, k), v, step + 1)
  244. # TRAIN & CV, Shell log (stdout)
  245. if (info_dict['batch_idx'] + 1) % info_dict['log_interval'] == 0:
  246. log_str = '{} Batch {}/{} '.format(tag, epoch, batch_idx + 1)
  247. for name, value in loss_dict.items():
  248. log_str += '{} {:.6f} '.format(name, value)
  249. if tag == "TRAIN":
  250. log_str += 'lr {:.8f} grad_norm {:.6f}'.format(
  251. info_dict["lr"], info_dict['grad_norm'])
  252. log_str += ' rank {}'.format(rank)
  253. logging.debug(log_str)
  254. def log_per_save(writer, info_dict):
  255. tag = info_dict["tag"]
  256. epoch = info_dict["epoch"]
  257. step = info_dict["step"]
  258. loss_dict = info_dict["loss_dict"]
  259. lr = info_dict['lr']
  260. rank = int(os.environ.get('RANK', 0))
  261. logging.info(
  262. 'Epoch {} Step {} CV info lr {} {} rank {}'.format(
  263. epoch, step + 1, lr, rank, ' '.join(['{}_{}'.format(k, v) for k, v in loss_dict.items()])))
  264. if writer is not None:
  265. for k in ['epoch', 'lr']:
  266. writer.add_scalar('{}/{}'.format(tag, k), info_dict[k], step + 1)
  267. for k, v in loss_dict.items():
  268. writer.add_scalar('{}/{}'.format(tag, k), v, step + 1)