Contributed by Yuekai Zhang (NVIDIA).
This document describes how to accelerate CosyVoice with a DiT-based Token2Wav module from Step-Audio2, using NVIDIA Triton Inference Server and TensorRT-LLM.
Launch the service directly with Docker Compose:
docker compose -f docker-compose.dit.yml up
To build the image from scratch:
docker build . -f Dockerfile.server -t soar97/triton-cosyvoice:25.06
your_mount_dir=/mnt:/mnt
docker run -it --name "cosyvoice-server" --gpus all --net host -v $your_mount_dir --shm-size=2g soar97/triton-cosyvoice:25.06
run_stepaudio2_dit_token2wav.shThe run_stepaudio2_dit_token2wav.sh script orchestrates the entire workflow through numbered stages.
You can run a subset of stages with:
bash run_stepaudio2_dit_token2wav.sh <start_stage> <stop_stage>
<start_stage>: The stage to start from.<stop_stage>: The stage to stop after.Stages:
Step-Audio2 and CosyVoice repositories.cosyvoice2_llm, CosyVoice2-0.5B, and Step-Audio-2-mini models.cosyvoice2_dit and token2wav_dit.trtllm-serve to deploy Cosyvoice2 LLM.Stage 8: Runs the benchmark client for the disaggregated server configuration.
Inside the Docker container, prepare the models and start the Triton server by running stages 0-3:
# This command runs stages 0, 1, 2, and 3
bash run_stepaudio2_dit_token2wav.sh 0 3
To benchmark the running Triton server, run stage 4:
bash run_stepaudio2_dit_token2wav.sh 4 4
# You can customize parameters such as the number of tasks inside the script.
The following results were obtained by decoding on a single L20 GPU with the yuekai/seed_tts_cosy2 dataset.
| Concurrent Tasks | RTF | Average (ms) | 50th Percentile (ms) | 90th Percentile (ms) | 95th Percentile (ms) | 99th Percentile (ms) |
|---|---|---|---|---|---|---|
| 1 | 0.1228 | 833.66 | 779.98 | 1297.05 | 1555.97 | 1653.02 |
| 2 | 0.0901 | 1166.23 | 1124.69 | 1762.76 | 1900.64 | 2204.14 |
| 4 | 0.0741 | 1849.30 | 1759.42 | 2624.50 | 2822.20 | 3128.42 |
| 6 | 0.0774 | 2936.13 | 3054.64 | 3849.60 | 3900.49 | 4245.79 |
| 8 | 0.0691 | 3408.56 | 3434.98 | 4547.13 | 5047.76 | 5346.53 |
| 10 | 0.0707 | 4306.56 | 4343.44 | 5769.64 | 5876.09 | 5939.79 |
| Concurrent Tasks | Average (ms) | 50th Percentile (ms) | 90th Percentile (ms) | 95th Percentile (ms) | 99th Percentile (ms) |
|---|---|---|---|---|---|
| 1 | 197.50 | 196.13 | 214.65 | 215.96 | 229.21 |
| 2 | 281.15 | 278.20 | 345.18 | 361.79 | 395.97 |
| 4 | 510.65 | 530.50 | 630.13 | 642.44 | 666.65 |
| 6 | 921.54 | 918.86 | 1079.97 | 1265.22 | 1524.41 |
| 8 | 1019.95 | 1085.26 | 1371.05 | 1402.24 | 1410.66 |
| 10 | 1214.98 | 1293.54 | 1575.36 | 1654.51 | 2161.76 |
For offline inference mode benchmark, please run stage 5:
bash run_stepaudio2_dit_token2wav.sh 5 5
The following results were obtained by decoding on a single L20 GPU with the yuekai/seed_tts_cosy2 dataset.
| Backend | Batch Size | llm_time_seconds | total_time_seconds | RTF | |---------|------------|------------------|-----------------------|--| | TRTLLM | 16 | 2.01 | 5.03 | 0.0292 |
When the LLM and token2wav components are deployed on the same GPU, they compete for resources. To optimize performance, we use a disaggregated setup where the LLM is deployed on one dedicated L20 GPU, taking advantage of in-flight batching for inference. The token2wav module is deployed on separate, dedicated GPUs.
The table below shows the first chunk latency results for this configuration. In our tests, we deploy two token2wav instances on each dedicated token2wav GPU.
| token2wav_num_gpu | concurrent_task_per_instance | concurrent_tasks_per_gpu | avg (ms) | p50 (ms) | p90 (ms) | p99 (ms) |
|---|---|---|---|---|---|---|
| 1 | 1 | 1.00 | 218.53 | 217.86 | 254.07 | 296.49 |
| 2 | 1 | 1.33 | 218.82 | 219.21 | 256.62 | 303.13 |
| 3 | 1 | 1.50 | 229.08 | 223.27 | 302.13 | 324.41 |
| 4 | 1 | 1.60 | 203.87 | 198.23 | 254.92 | 279.31 |
| 1 | 2 | 2.00 | 293.46 | 280.53 | 370.81 | 407.40 |
| 2 | 2 | 2.67 | 263.38 | 236.84 | 350.82 | 397.39 |
| 3 | 2 | 3.00 | 308.09 | 275.48 | 385.22 | 521.45 |
| 4 | 2 | 3.20 | 271.85 | 253.25 | 359.03 | 387.91 |
| 1 | 3 | 3.00 | 389.15 | 373.01 | 469.22 | 542.89 |
| 2 | 3 | 4.00 | 403.48 | 394.80 | 481.24 | 507.75 |
| 3 | 3 | 4.50 | 406.33 | 391.28 | 495.43 | 571.29 |
| 4 | 3 | 4.80 | 436.72 | 383.81 | 638.44 | 879.23 |
| 1 | 4 | 4.00 | 520.12 | 493.98 | 610.38 | 739.85 |
| 2 | 4 | 5.33 | 494.60 | 490.50 | 605.93 | 708.09 |
| 3 | 4 | 6.00 | 538.23 | 508.33 | 687.62 | 736.96 |
| 4 | 4 | 6.40 | 579.68 | 546.20 | 721.53 | 958.04 |
| 1 | 5 | 5.00 | 635.02 | 623.30 | 786.85 | 819.84 |
| 2 | 5 | 6.67 | 598.23 | 617.09 | 741.00 | 788.96 |
| 3 | 5 | 7.50 | 644.78 | 684.40 | 786.45 | 1009.45 |
| 4 | 5 | 8.00 | 733.92 | 642.26 | 1024.79 | 1281.55 |
| 1 | 6 | 6.00 | 715.38 | 745.68 | 887.04 | 906.68 |
| 2 | 6 | 8.00 | 748.31 | 753.94 | 873.59 | 1007.14 |
| 3 | 6 | 9.00 | 900.27 | 822.28 | 1431.14 | 1800.23 |
| 4 | 6 | 9.60 | 857.54 | 820.33 | 1150.30 | 1298.53 |
The concurrent_task_per_gpu is calculated as:
concurrent_task_per_gpu = concurrent_task_per_instance * num_token2wav_instance_per_gpu (2) * token2wav_gpus / (token2wav_gpus + llm_gpus (1))
This work originates from the NVIDIA CISI project. For more multimodal resources, please see mair-hub.