| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277 |
- # Copyright 2025, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
- #
- # Redistribution and use in source and binary forms, with or without
- # modification, are permitted provided that the following conditions
- # are met:
- # * Redistributions of source code must retain the above copyright
- # notice, this list of conditions and the following disclaimer.
- # * Redistributions in binary form must reproduce the above copyright
- # notice, this list of conditions and the following disclaimer in the
- # documentation and/or other materials provided with the distribution.
- # * Neither the name of NVIDIA CORPORATION nor the names of its
- # contributors may be used to endorse or promote products derived
- # from this software without specific prior written permission.
- #
- # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
- # EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
- # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
- # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
- # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
- # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
- # PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
- # OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
- # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- import json
- import os
- import logging
- import torch
- from torch.utils.dlpack import to_dlpack
- from torch.nn import functional as F
- import triton_python_backend_utils as pb_utils
- from hyperpyyaml import load_hyperpyyaml
- from cosyvoice.utils.common import fade_in_out
- from cosyvoice.utils.file_utils import convert_onnx_to_trt, export_cosyvoice2_vllm
- from cosyvoice.utils.common import TrtContextWrapper
- from collections import defaultdict
- import numpy as np
- logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
- logger = logging.getLogger(__name__)
- ORIGINAL_VOCAB_SIZE = 151663
- torch.set_num_threads(1)
- class CosyVoice2:
- def __init__(self, model_dir, load_jit=False, load_trt=False, fp16=False, trt_concurrent=1, device='cuda'):
- self.model_dir = model_dir
- self.fp16 = fp16
- hyper_yaml_path = '{}/cosyvoice2.yaml'.format(model_dir)
- if not os.path.exists(hyper_yaml_path):
- raise ValueError('{} not found!'.format(hyper_yaml_path))
- with open(hyper_yaml_path, 'r') as f:
- configs = load_hyperpyyaml(f, overrides={'qwen_pretrain_path': os.path.join(model_dir, 'CosyVoice-BlankEN')})
- self.model = CosyVoice2Model(configs['flow'], configs['hift'], fp16, device)
- self.model.load('{}/flow.pt'.format(model_dir), '{}/hift.pt'.format(model_dir))
- if load_jit:
- self.model.load_jit('{}/flow.encoder.{}.zip'.format(model_dir, 'fp16' if self.fp16 is True else 'fp32'))
- if load_trt:
- self.model.load_trt('{}/flow.decoder.estimator.{}.mygpu.plan'.format(model_dir, 'fp16' if self.fp16 is True else 'fp32'),
- '{}/flow.decoder.estimator.fp32.onnx'.format(model_dir),
- trt_concurrent,
- self.fp16)
- class CosyVoice2Model:
- def __init__(self,
- flow: torch.nn.Module,
- hift: torch.nn.Module,
- fp16: bool = False,
- device: str = 'cuda'):
- self.device = device
- self.flow = flow
- self.hift = hift
- self.fp16 = fp16
- if self.fp16 is True:
- self.flow.half()
- # streaming tts config
- self.token_hop_len = 25
- self.mel_cache_len = 8
- self.source_cache_len = int(self.mel_cache_len * 480)
- self.speech_window = np.hamming(2 * self.source_cache_len)
- self.hift_cache_dict = defaultdict(lambda: None)
- def load_jit(self, flow_encoder_model):
- flow_encoder = torch.jit.load(flow_encoder_model, map_location=self.device)
- self.flow.encoder = flow_encoder
- def load(self, flow_model, hift_model):
- self.flow.load_state_dict(torch.load(flow_model, map_location=self.device), strict=True)
- self.flow.to(self.device).eval()
- # in case hift_model is a hifigan model
- hift_state_dict = {k.replace('generator.', ''): v for k, v in torch.load(hift_model, map_location=self.device).items()}
- self.hift.load_state_dict(hift_state_dict, strict=True)
- self.hift.to(self.device).eval()
- def load_trt(self, flow_decoder_estimator_model, flow_decoder_onnx_model, trt_concurrent, fp16):
- assert torch.cuda.is_available(), 'tensorrt only supports gpu!'
- if not os.path.exists(flow_decoder_estimator_model) or os.path.getsize(flow_decoder_estimator_model) == 0:
- convert_onnx_to_trt(flow_decoder_estimator_model, self.get_trt_kwargs(), flow_decoder_onnx_model, fp16)
- del self.flow.decoder.estimator
- import tensorrt as trt
- with open(flow_decoder_estimator_model, 'rb') as f:
- estimator_engine = trt.Runtime(trt.Logger(trt.Logger.INFO)).deserialize_cuda_engine(f.read())
- assert estimator_engine is not None, 'failed to load trt {}'.format(flow_decoder_estimator_model)
- self.flow.decoder.estimator = TrtContextWrapper(estimator_engine, trt_concurrent=trt_concurrent, device=self.device)
- def get_trt_kwargs(self):
- min_shape = [(2, 80, 4), (2, 1, 4), (2, 80, 4), (2, 80, 4)]
- opt_shape = [(2, 80, 500), (2, 1, 500), (2, 80, 500), (2, 80, 500)]
- max_shape = [(2, 80, 3000), (2, 1, 3000), (2, 80, 3000), (2, 80, 3000)]
- input_names = ["x", "mask", "mu", "cond"]
- return {'min_shape': min_shape, 'opt_shape': opt_shape, 'max_shape': max_shape, 'input_names': input_names}
- def token2wav(self, token, prompt_token, prompt_feat, embedding, token_offset, uuid, stream=False, finalize=False, speed=1.0):
- with torch.cuda.amp.autocast(self.fp16):
- tts_mel, _ = self.flow.inference(token=token.to(self.device),
- token_len=torch.tensor([token.shape[1]], dtype=torch.int32).to(self.device),
- prompt_token=prompt_token.to(self.device),
- prompt_token_len=torch.tensor([prompt_token.shape[1]], dtype=torch.int32).to(self.device),
- prompt_feat=prompt_feat.to(self.device),
- prompt_feat_len=torch.tensor([prompt_feat.shape[1]], dtype=torch.int32).to(self.device),
- embedding=embedding.to(self.device),
- streaming=stream,
- finalize=finalize)
- tts_mel = tts_mel[:, :, token_offset * self.flow.token_mel_ratio:]
- # append hift cache
- if self.hift_cache_dict[uuid] is not None:
- hift_cache_mel, hift_cache_source = self.hift_cache_dict[uuid]['mel'], self.hift_cache_dict[uuid]['source']
- tts_mel = torch.concat([hift_cache_mel, tts_mel], dim=2)
- else:
- hift_cache_source = torch.zeros(1, 1, 0)
- # keep overlap mel and hift cache
- if finalize is False:
- tts_speech, tts_source = self.hift.inference(speech_feat=tts_mel, cache_source=hift_cache_source)
- if self.hift_cache_dict[uuid] is not None:
- tts_speech = fade_in_out(tts_speech, self.hift_cache_dict[uuid]['speech'], self.speech_window)
- self.hift_cache_dict[uuid] = {'mel': tts_mel[:, :, -self.mel_cache_len:],
- 'source': tts_source[:, :, -self.source_cache_len:],
- 'speech': tts_speech[:, -self.source_cache_len:]}
- tts_speech = tts_speech[:, :-self.source_cache_len]
- else:
- if speed != 1.0:
- assert self.hift_cache_dict[uuid] is None, 'speed change only support non-stream inference mode'
- tts_mel = F.interpolate(tts_mel, size=int(tts_mel.shape[2] / speed), mode='linear')
- tts_speech, tts_source = self.hift.inference(speech_feat=tts_mel, cache_source=hift_cache_source)
- if self.hift_cache_dict[uuid] is not None:
- tts_speech = fade_in_out(tts_speech, self.hift_cache_dict[uuid]['speech'], self.speech_window)
- return tts_speech
- class TritonPythonModel:
- """Triton Python model for vocoder.
- This model takes global and semantic tokens as input and generates audio waveforms
- using the BiCodec vocoder.
- """
- def initialize(self, args):
- """Initialize the model.
- Args:
- args: Dictionary containing model configuration
- """
- # Parse model parameters
- parameters = json.loads(args['model_config'])['parameters']
- model_params = {key: value["string_value"] for key, value in parameters.items()}
- model_dir = model_params["model_dir"]
- # Initialize device and vocoder
- self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
- logger.info(f"Initializing vocoder from {model_dir} on {self.device}")
- self.token2wav_model = CosyVoice2(
- model_dir, load_jit=False, load_trt=True, fp16=True, device=self.device
- )
- spk_info_path = os.path.join(model_dir, "spk2info.pt")
- if not os.path.exists(spk_info_path):
- raise ValueError(f"spk2info.pt not found in {model_dir}")
- spk_info = torch.load(spk_info_path, map_location="cpu", weights_only=False)
- self.default_spk_info = spk_info["001"]
- logger.info("Token2Wav initialized successfully")
- def execute(self, requests):
- """Execute inference on the batched requests.
- Args:
- requests: List of inference requests
- Returns:
- List of inference responses containing generated waveforms
- """
- responses = []
- # Process each request in batch
- for request in requests:
- target_speech_tokens_tensor = pb_utils.get_input_tensor_by_name(request, "target_speech_tokens").as_numpy()
- target_speech_tokens = torch.from_numpy(target_speech_tokens_tensor).to(self.device)
- prompt_speech_tokens_tensor = pb_utils.get_input_tensor_by_name(request, "prompt_speech_tokens")
- if prompt_speech_tokens_tensor is not None:
- prompt_speech_tokens_tensor = prompt_speech_tokens_tensor.as_numpy()
- prompt_speech_feat_tensor = pb_utils.get_input_tensor_by_name(request, "prompt_speech_feat").as_numpy()
- prompt_spk_embedding_tensor = pb_utils.get_input_tensor_by_name(request, "prompt_spk_embedding").as_numpy()
- prompt_speech_tokens = torch.from_numpy(prompt_speech_tokens_tensor).to(self.device)
- prompt_speech_feat = torch.from_numpy(prompt_speech_feat_tensor).to(self.device)
- prompt_spk_embedding = torch.from_numpy(prompt_spk_embedding_tensor).to(self.device)
- prompt_speech_tokens = prompt_speech_tokens - ORIGINAL_VOCAB_SIZE
- else:
- prompt_speech_tokens = self.default_spk_info["speech_token"].to(self.device)
- prompt_speech_feat = self.default_spk_info["speech_feat"].to(torch.float16).to(self.device)
- prompt_spk_embedding = self.default_spk_info["embedding"].to(torch.float16).to(self.device)
- # shift the speech tokens according to the original vocab size
- target_speech_tokens = target_speech_tokens - ORIGINAL_VOCAB_SIZE
- # We set token_offset as an optional input to support streaming/offline tts. It has to be None when offline tts.
- token_offset = pb_utils.get_input_tensor_by_name(request, "token_offset")
- if token_offset is not None:
- token_offset = token_offset.as_numpy().item()
- finalize = pb_utils.get_input_tensor_by_name(request, "finalize").as_numpy().item()
- if not finalize:
- stream = True
- else:
- stream = False
- request_id = request.request_id()
- audio_hat = self.token2wav_model.model.token2wav(token=target_speech_tokens,
- prompt_token=prompt_speech_tokens,
- prompt_feat=prompt_speech_feat,
- embedding=prompt_spk_embedding,
- token_offset=token_offset,
- uuid=request_id,
- stream=stream,
- finalize=finalize)
- if finalize:
- self.token2wav_model.model.hift_cache_dict.pop(request_id)
- else:
- tts_mel, _ = self.token2wav_model.model.flow.inference(
- token=target_speech_tokens,
- token_len=torch.tensor([target_speech_tokens.shape[1]], dtype=torch.int32).to(
- self.device
- ),
- prompt_token=prompt_speech_tokens,
- prompt_token_len=torch.tensor(
- [prompt_speech_tokens.shape[1]], dtype=torch.int32
- ).to(self.device),
- prompt_feat=prompt_speech_feat,
- prompt_feat_len=torch.tensor([prompt_speech_feat.shape[1]], dtype=torch.int32).to(self.device),
- embedding=prompt_spk_embedding,
- streaming=False,
- finalize=True,
- )
- audio_hat, _ = self.token2wav_model.model.hift.inference(
- speech_feat=tts_mel, cache_source=torch.zeros(1, 1, 0)
- )
- generated_wave = audio_hat.squeeze(0).cpu().numpy()
- wav_tensor = pb_utils.Tensor.from_dlpack("waveform", to_dlpack(audio_hat))
- inference_response = pb_utils.InferenceResponse(output_tensors=[wav_tensor])
- responses.append(inference_response)
- return responses
|