| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283 |
- # Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu)
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import os
- import torch
- from hyperpyyaml import load_hyperpyyaml
- from modelscope import snapshot_download
- from cosyvoice.cli.frontend import CosyVoiceFrontEnd
- from cosyvoice.cli.model import CosyVoiceModel
- class CosyVoice:
- def __init__(self, model_dir):
- instruct = True if '-Instruct' in model_dir else False
- self.model_dir = model_dir
- if not os.path.exists(model_dir):
- model_dir = snapshot_download(model_dir)
- with open('{}/cosyvoice.yaml'.format(model_dir), 'r') as f:
- configs = load_hyperpyyaml(f)
- self.frontend = CosyVoiceFrontEnd(configs['get_tokenizer'],
- configs['feat_extractor'],
- '{}/campplus.onnx'.format(model_dir),
- '{}/speech_tokenizer_v1.onnx'.format(model_dir),
- '{}/spk2info.pt'.format(model_dir),
- instruct,
- configs['allowed_special'])
- self.model = CosyVoiceModel(configs['llm'], configs['flow'], configs['hift'])
- self.model.load('{}/llm.pt'.format(model_dir),
- '{}/flow.pt'.format(model_dir),
- '{}/hift.pt'.format(model_dir))
- del configs
- def list_avaliable_spks(self):
- spks = list(self.frontend.spk2info.keys())
- return spks
- def inference_sft(self, tts_text, spk_id):
- tts_speeches = []
- for i in self.frontend.text_normalize(tts_text, split=True):
- model_input = self.frontend.frontend_sft(i, spk_id)
- model_output = self.model.inference(**model_input)
- tts_speeches.append(model_output['tts_speech'])
- return {'tts_speech': torch.concat(tts_speeches, dim=1)}
- def inference_zero_shot(self, tts_text, prompt_text, prompt_speech_16k):
- prompt_text = self.frontend.text_normalize(prompt_text, split=False)
- tts_speeches = []
- for i in self.frontend.text_normalize(tts_text, split=True):
- model_input = self.frontend.frontend_zero_shot(i, prompt_text, prompt_speech_16k)
- model_output = self.model.inference(**model_input)
- tts_speeches.append(model_output['tts_speech'])
- return {'tts_speech': torch.concat(tts_speeches, dim=1)}
- def inference_cross_lingual(self, tts_text, prompt_speech_16k):
- if self.frontend.instruct is True:
- raise ValueError('{} do not support cross_lingual inference'.format(self.model_dir))
- tts_speeches = []
- for i in self.frontend.text_normalize(tts_text, split=True):
- model_input = self.frontend.frontend_cross_lingual(i, prompt_speech_16k)
- model_output = self.model.inference(**model_input)
- tts_speeches.append(model_output['tts_speech'])
- return {'tts_speech': torch.concat(tts_speeches, dim=1)}
- def inference_instruct(self, tts_text, spk_id, instruct_text):
- if self.frontend.instruct is False:
- raise ValueError('{} do not support instruct inference'.format(self.model_dir))
- instruct_text = self.frontend.text_normalize(instruct_text, split=False)
- tts_speeches = []
- for i in self.frontend.text_normalize(tts_text, split=True):
- model_input = self.frontend.frontend_instruct(i, spk_id, instruct_text)
- model_output = self.model.inference(**model_input)
- tts_speeches.append(model_output['tts_speech'])
- return {'tts_speech': torch.concat(tts_speeches, dim=1)}
|