| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174 |
- #!/bin/bash
- # Copyright (c) 2025 NVIDIA (authors: Yuekai Zhang)
- export CUDA_VISIBLE_DEVICES=0
- cosyvoice_path=/workspace/CosyVoice
- stepaudio2_path=/workspace/Step-Audio2
- export PYTHONPATH=${stepaudio2_path}:$PYTHONPATH
- export PYTHONPATH=${cosyvoice_path}:$PYTHONPATH
- export PYTHONPATH=${cosyvoice_path}/third_party/Matcha-TTS:$PYTHONPATH
- stage=$1
- stop_stage=$2
- huggingface_model_local_dir=./cosyvoice2_llm
- model_scope_model_local_dir=./CosyVoice2-0.5B
- step_audio_model_dir=./Step-Audio-2-mini
- trt_dtype=bfloat16
- trt_weights_dir=./trt_weights_${trt_dtype}
- trt_engines_dir=./trt_engines_${trt_dtype}
- model_repo=./model_repo_cosyvoice2_dit
- bls_instance_num=4
- if [ $stage -le -1 ] && [ $stop_stage -ge -1 ]; then
- echo "Cloning Step-Audio2-mini"
- git clone https://github.com/yuekaizhang/Step-Audio2.git -b trt $stepaudio2_path
- echo "Cloning CosyVoice"
- git clone --recursive https://github.com/FunAudioLLM/CosyVoice.git $cosyvoice_path
- cd $cosyvoice_path
- git submodule update --init --recursive
- cd runtime/triton_trtllm
- fi
- if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then
- echo "Downloading CosyVoice2-0.5B"
- # see https://github.com/nvidia-china-sae/mair-hub/blob/main/rl-tutorial/cosyvoice_llm/pretrained_to_huggingface.py
- huggingface-cli download --local-dir $huggingface_model_local_dir yuekai/cosyvoice2_llm
- modelscope download --model iic/CosyVoice2-0.5B --local_dir $model_scope_model_local_dir
- echo "Step-Audio2-mini"
- huggingface-cli download --local-dir $step_audio_model_dir stepfun-ai/Step-Audio-2-mini
- cd $stepaudio2_path/token2wav
- wget https://huggingface.co/yuekai/cosyvoice2_dit_flow_matching_onnx/resolve/main/flow.decoder.estimator.fp32.dynamic_batch.onnx -O flow.decoder.estimator.fp32.dynamic_batch.onnx
- wget https://huggingface.co/yuekai/cosyvoice2_dit_flow_matching_onnx/resolve/main/flow.decoder.estimator.chunk.fp32.dynamic_batch.simplify.onnx -O flow.decoder.estimator.chunk.fp32.dynamic_batch.simplify.onnx
- cd -
- fi
- if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then
- echo "Converting checkpoint to TensorRT weights"
- python3 scripts/convert_checkpoint.py --model_dir $huggingface_model_local_dir \
- --output_dir $trt_weights_dir \
- --dtype $trt_dtype || exit 1
- echo "Building TensorRT engines"
- trtllm-build --checkpoint_dir $trt_weights_dir \
- --output_dir $trt_engines_dir \
- --max_batch_size 16 \
- --max_num_tokens 32768 \
- --gemm_plugin $trt_dtype || exit 1
- echo "Testing TensorRT engines"
- python3 ./scripts/test_llm.py --input_text "你好,请问你叫什么?" \
- --tokenizer_dir $huggingface_model_local_dir \
- --top_k 50 --top_p 0.95 --temperature 0.8 \
- --engine_dir=$trt_engines_dir || exit 1
- fi
- if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
- echo "Creating model repository async mode"
- rm -rf $model_repo
- mkdir -p $model_repo
- cosyvoice2_dir="cosyvoice2_dit"
- token2wav_dir="token2wav_dit"
- cp -r ./model_repo/${cosyvoice2_dir} $model_repo
- cp -r ./model_repo/${token2wav_dir} $model_repo
- cp -r ./model_repo/audio_tokenizer $model_repo
- cp -r ./model_repo/speaker_embedding $model_repo
- ENGINE_PATH=$trt_engines_dir
- MAX_QUEUE_DELAY_MICROSECONDS=0
- MODEL_DIR=$model_scope_model_local_dir
- LLM_TOKENIZER_DIR=$huggingface_model_local_dir
- BLS_INSTANCE_NUM=$bls_instance_num
- TRITON_MAX_BATCH_SIZE=1
- DECOUPLED_MODE=True # Only streaming TTS mode is supported using Nvidia Triton for now
- STEP_AUDIO_MODEL_DIR=$step_audio_model_dir/token2wav
- python3 scripts/fill_template.py -i ${model_repo}/${token2wav_dir}/config.pbtxt model_dir:${STEP_AUDIO_MODEL_DIR},triton_max_batch_size:${TRITON_MAX_BATCH_SIZE},max_queue_delay_microseconds:${MAX_QUEUE_DELAY_MICROSECONDS}
- python3 scripts/fill_template.py -i ${model_repo}/${cosyvoice2_dir}/config.pbtxt model_dir:${MODEL_DIR},bls_instance_num:${BLS_INSTANCE_NUM},llm_tokenizer_dir:${LLM_TOKENIZER_DIR},triton_max_batch_size:${TRITON_MAX_BATCH_SIZE},decoupled_mode:${DECOUPLED_MODE},max_queue_delay_microseconds:${MAX_QUEUE_DELAY_MICROSECONDS}
- python3 scripts/fill_template.py -i ${model_repo}/audio_tokenizer/config.pbtxt model_dir:${MODEL_DIR},triton_max_batch_size:${TRITON_MAX_BATCH_SIZE},max_queue_delay_microseconds:${MAX_QUEUE_DELAY_MICROSECONDS}
- python3 scripts/fill_template.py -i ${model_repo}/speaker_embedding/config.pbtxt model_dir:${MODEL_DIR},triton_max_batch_size:${TRITON_MAX_BATCH_SIZE},max_queue_delay_microseconds:${MAX_QUEUE_DELAY_MICROSECONDS}
- fi
- if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
- echo "Starting Token2wav Triton server and Cosyvoice2 llm using trtllm-serve"
- tritonserver --model-repository $model_repo --http-port 18000 &
- mpirun -np 1 --allow-run-as-root --oversubscribe trtllm-serve serve --tokenizer $huggingface_model_local_dir $trt_engines_dir --max_batch_size 16 --kv_cache_free_gpu_memory_fraction 0.4 &
- wait
- # Test using curl
- # curl http://localhost:8000/v1/chat/completions \
- # -H "Content-Type: application/json" \
- # -d '{
- # "model": "trt_engines_bfloat16",
- # "messages":[{"role": "user", "content": "Where is New York?"},
- # {"role": "assistant", "content": "<|s_1708|><|s_2050|><|s_2159|>"}],
- # "max_tokens": 512,
- # "temperature": 0.8,
- # "top_p": 0.95,
- # "top_k": 50,
- # "stop": ["<|eos1|>"],
- # "repetition_penalty": 1.2,
- # "stream": false
- # }'
- fi
- if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then
- echo "Running benchmark client"
- num_task=4
- mode=streaming
- BLS_INSTANCE_NUM=$bls_instance_num
- python3 client_grpc.py \
- --server-addr localhost \
- --server-port 8001 \
- --model-name cosyvoice2_dit \
- --num-tasks $num_task \
- --mode $mode \
- --huggingface-dataset yuekai/seed_tts_cosy2 \
- --log-dir ./log_single_gpu_concurrent_tasks_${num_task}_${mode}_bls_${BLS_INSTANCE_NUM}
- fi
- if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then
- echo "stage 5: Offline TTS (Cosyvoice2 LLM + Step-Audio2-mini DiT Token2Wav) inference using a single python script"
- datasets=(wenetspeech4tts) # wenetspeech4tts, test_zh, zero_shot_zh
- backend=trtllm # hf, trtllm, vllm, trtllm-serve
- batch_sizes=(16)
- token2wav_batch_size=1
- for batch_size in ${batch_sizes[@]}; do
- for dataset in ${datasets[@]}; do
- output_dir=./${dataset}_${backend}_llm_batch_size_${batch_size}_token2wav_batch_size_${token2wav_batch_size}
- CUDA_VISIBLE_DEVICES=1 \
- python3 offline_inference.py \
- --output-dir $output_dir \
- --llm-model-name-or-path $huggingface_model_local_dir \
- --token2wav-path $step_audio_model_dir/token2wav \
- --backend $backend \
- --batch-size $batch_size --token2wav-batch-size $token2wav_batch_size \
- --engine-dir $trt_engines_dir \
- --split-name ${dataset} || exit 1
- done
- done
- fi
- if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then
- echo "Running Step-Audio2-mini DiT Token2Wav inference using a single python script"
- export CUDA_VISIBLE_DEVICES=1
- # Note: Using pre-computed cosyvoice2 tokens
- python3 streaming_inference.py --enable-trt --strategy equal # equal, exponential
- # Offline Token2wav inference
- # python3 token2wav_dit.py --enable-trt
- fi
|